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Summary
One of the long standing problems in navigation is explained and the mathematical 
formulation using Riemannian and Finsler geometry is introduced. Randers norms 
and Randers metrics used for the description of the influence of the wind or of the 
current on the cruising boat are explained. The explicit formulas relating the vector 
field representing the wind or the current with the corresponding Randers metric 
are given. Special situations with complete mathematical solution of the problem 
are mentioned, namely the case of the Riemannian manifold with constant sectional 
curvature, Finsler spaces with constant flag curvature, some special manifolds in 
dimension 3 and other. Some possibilities for different  mathematical approach to 
the problem and also for further research are indicated.
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1. INTRODUCTION
It is well known that the shortest path in the Euclidean space En 

with the standard norm, which induces the distance function, is 
the straight line. On the sphere Sn, again with the natural distance 
function induced by the norm defined on tangent vectors and 
inherited from the standard norm on the ambient space En+1, 
locally, the shortest path is a part of the main circle. On a general 
Riemannian manifold, this is the property of geodesic curves. 
However, in a more general context, the norm does not have 
to come from the Euclidean scalar product. In the more general 
setting, a Minkowski norm on a vector space is not symmetric, 
hence the length of a vector may be different than the length of 
the opposite vector. Consequently, in a Finsler space, the length 
of a curve travelled in one direction may be different than the 
length of the same trajectory travelled in the opposite direction. 
However, geodesics are still well defined as shortest curves 
connecting their  points that are close enough.

Imagine a ship sailing in a sea without any current and 
without any wind. The situation can be well described by the 
tools of Riemannian geometry, where shortest curves (fastest 
trajectories) are geodesics. However, if a wind or a current is 
present, then obviously the time required to travel some distance 
in one direction is different than the time necessary to travel 
the same distance in the opposite direction. There are various 
geometrical techniques how to describe this situation. One of 
them is the mentioned Finsler geometry, where the wind or the 
current modify the Riemannian metric to a general Finsler metric. 
We shall introduce this description and some interesting related 
phenomena.

2. ELEMENTARY RIEMANNIAN AND FINSLER 
GEOMETRY 
Let us recall that the Euclidean vector space is a vector space with 
a symmetric and positively definite bilinear form . This bilinear 
form induces the norm (length) of vectors by the formula

                               (1)

Given a Riemannian manifold (M, g) we have a bilinear form  
gx on the tangent space of each point x of M. For example, let 
(M, g) be the two-dimensional sphere in the three-dimensional 
space E3. The tangent space at any point x of M is the tangent 
plane, as we naturally imagine it. Another example of a two-
dimensional manifold is the torus.

Source: author 
Figure 1 The tangent plane of the sphere and the tangent plane 

of the torus at a point

The bilinear form gx is the restriction of the ordinary scalar 
product defined on the Euclidean space E3 to this tangent plane. 
The induced lengths of vectors in these tangent planes are, in this 
situation, also the ordinary lengths as we naturally imagine it.

Now, let us consider a curve γ(t) in the Riemannian manifold 
defined on the interval (a, b). At each point x on the curve, there 
is the bilinear form gx on the tangent space of the manifold M at  
x. This bilinear form gives the length of the tangent vector γ’(t) at 
the point γ(t). We naturally define the length of the curve as the 
integral of lengths of tangent vectors along this curve, hence

                                  (2)

This integral does not depend on the parametrization of 
the curve. If we reparametrize the curve in a way that the norm 
of the tangent vector is equal to one, then L(γ) = b-a and the 
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length of the curve is the time necessary for traveling along the 
curve with the unit speed. Using the length of curves, we can 
define the distance of two points x and y of M as the infimum 
of lengths of all curves connecting and y. For any two points x and 
y in a Riemannian manifold, the distance from x to y is the same as 
the distance from y to x.

Geodesics in the Riemannian manifold (M, g) are curves 
which are extremals of the length functional and they are the 
best possible analogues of lines in the Euclidean space. The 
important property of a geodesic γ is that for any two points 
on γ which are close enough, γ is the shortest curve connecting 
these two points. Hence, the distance of these two points is 
realized by this geodesic γ. Geodesics are obtained as solutions 
of a system of differential equations. Another important 
property is that, given a point x in M and a tangent vector v in 
the tangent space of M at x, there exist a unique local geodesic 
γ(t) such that γ(0) = x and γ’(0) = v in other words, the position 
at the beginning is x and the velocity at the beginning is v. If 
the Riemannian manifold (M, g) is complete, then for any x of M 
there is a neighbourhood U of x such that any point y of U can be 
joined with x by the unique minimizing geodesic lying in U. In 
the Euclidean space with the standard norm, geodesics are the 
straight lines. In the sphere with the natural Riemannian metric, 
geodesics are the main circles. The above mentioned properties 
of geodesics allow us to consider geodesics as the most natural 
trajectories in general Riemannian manifolds.

Source: author
Figure 2 Some lines in the tangent space and corresponding 

geodesics in the sphere

A generalization of the Euclidean space is the Minkowski 
space, which is a vector space equipped with a norm function  
F. Of course, F may be the above norm induced by the scalar 
product, but there are more general norms. It is natural to 
require that the norm is positively homogeneous and strictly 
convex. Simplest examples are Randers norms, which are 
determined by a symmetric positively definite bilinear form a 
and a one-form b whose length with respect to a is smaller than 
one. For any vector v, its norm is given by the formula

                     (3)

The set of unit vectors with respect to a Randers norm is not 
the circle anymore (or the sphere, in general), but the ellipse (or 
ellipsoid, in general) which is not centered at the origin. Because 
the norm of the one-form b with respect to the bilinear form 
a is smaller than one, the origin o of the vector space is inside 
this ellipse. For example, if a is the standard bilinear form in 
dimension 2 with components given by the unit matrix and b is 

the one form such that b1 = 0 and b2 = 1
2

, then the ellipse of unit 
vectors is indicated on the picture below.

Source: author 
Figure 3 Unit vectors with respect to a Randers norm

Now, a Finsler space (M, F) is a smooth manifold M and the 
Finsler function F, which gives a Minkowski norm on the tangent 
space at any point x of M. If these Minkowski norms are Randers 
norms, the Finsler space (M, F) is called Randers space. In the 
similar way as for the Riemannian manifold, in the Finsler space 
(M, F), we naturally define the length of a curve σ defined on the 
interval (a, b) as the integral of norms of tangent vectors σ’(t) at 
points σ(t) along this curve, hence

                     (4)

However, in a Finsler space (M, F), there are strong 
differences compared with a Riemannian manifold (M, g). First, 
the Minkowski norm is not symmetric in general and hence  
F(v) ≠ F(-v) in general. Because of this, the length of a curve σ 
travelled in one direction may be different that the length 
of the same trajectory travelled in the opposite direction. 
Also a curve may be a geodesic if we parametrize it in one 
direction and the same trajectory may not be a geodesic if we 
parametrize it in the opposite direction. But it remains true in 
the complete Finsler space (M, F) that for any x of M there exist a 
neighbourhood U of x such that any y of U can be joined with x 
by the unique minimizing geodesic lying in U. See for example 
the monographs [5] by D. Bao, S.S. Chern and Z. Shen or [7] by S. 
Deng for more details about Finsler geometry.

3. NAVIGATION DATA AND RELATED RANDERS 
METRIC
Let us now return to the real problem of the ship on the sea. In 
the simplest case, the surface of the sea can be considered to be 
the two-dimensional space E2 equipped with the standard norm 
as in the Introduction. In the more general case, the sea can 
be modelled by the two-dimensional sphere with the natural 
Riemannian metric. However, in full mathematical generality, 
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the sea can be any Riemannian manifold of arbitrary dimension. 
The possible tracks of the ship are curves on the manifold and 
it is natural to aim at the destination in the shortest possible 
time. To measure the length of particular trajectories, or the 
time necessary for travelling these particular trajectories, 
respectively, we use the Riemannian metric h on M and the 
integral above. Naturally, the curves of interest are geodesics 
with respect to this metric.

Now consider the same situation with the wind or with the 
current. This problem was originally formulated by Zermelo 
in [16] for the manifold M = E2 and later it was generalized for 
arbitrary manifold M. See also the book [6] by C. Carathéodory 
for a modern formulation using partial differential equations 
and the corresponding variational problems. The direction and 
the strength of the wind or of the current are represented by 
the vector Wx at each point of the sea. We assume that the wind 
is not too strong, more precisely, at any point x, it holds h(Wx, 
Wx)<1. We further assume that the wind is not changing in time, 
however, at different points it may have different strength and 
different direction. At any point x of the manifold M, the wind 
or the current is represented by the vector from the tangent 
space at x. We shall consider just one point and its tangent 
space, which is the Euclidean space. The wind at this point is 
represented by just one vector W. If a ship is navigated to go in 
direction of a vector v (representing the velocity, which has the 
direction and the value), the real direction of the ship is v+W. 
Hence, v+W is the real movement of the ship in the unit time. 
The Riemannian metric h (which gives the scalar product hx and 
consequently the norm at each point x of M) and the vector field   
W (which gives the vector Wx at each point x of M) are called 
Zermelo navigation data.

Source: author 
Figure 4 Distance travelled in unit time with the influence of W

We are going to show that the navigation data (a Riemannian 
metric h and a vector field W) determine a unique Randers 
metric F. The details can be found for example in the paper [3] 
by D. Bao, C. Robles and Z. Shen or the paper [13] by C. Robles. 
We shall work locally on a neighbourhood of a point x of M. The 
components of the Riemannian metric h with respect to some 
coordinate system are hij and the components of the vector field 
W are Wj. We further denote by λ the function

                     (5)

and we denote by Wi the components of the dual one-forms, 
hence Wi = hij W

j. Then the functions

                               (6)

are components of the symmetric bilinear form a and functions

                                                (7)

are components of the one-form b. Using these forms, we 
obtain a Randers norm F, by the formula

                        (8)

which holds for arbitrary vector v. From the assumption h(W, W) 
< 1, we obtain the necessary property a(b, b) < 1. The relation 
of the most effective trajectories on the original Riemannian 
manifold (M, h) under the influence of the wind or the current  
W with geodesics of the Randers norm F was investigated in 
several works, originally for the Riemannian manifold M = E2 and 
later in full generality. It was proved by Z. Shen in the paper [14] 
that the most effective trajectories on (M, h)under the influence 
of the wind or the current W are geodesics of the Randers metric  
F constructed above.

It is also interesting to consider the inverse problem, namely 
start with a Randers metric F and construct a Riemannian 
metric h and the wind W such that geodesics of F are the 
effective trajectories on the Riemannian manifold (M, h) under 
the influence of W. To this account, denote by aij  and bi the 
components of the Randers metric F. Denote by aij the inverse 
matrix to aij  and by bi the components of the dual forms, namely   
bj = ajkbk and put

                                          (9)
Now put

                                    (10)

and
                                             (11)

We have obtained the components of the Riemannian 
metric h and the components of the vector field W. Now, the 
assumption a(b, b) < 1 implies h(W, W) < 1. It can be checked 
by the direct calculations that the application of the procedure 
above to the pair (h, W) gives back the original Randers norm F.

We can conclude that the formulation of the problem using 
the Randers norm F or using the Riemannian metric h and 
the vector field W are equivalent. For more details about this 
relation, see for example the paper [4] by D. Bao and C. Robles.

4. SPECIAL SITUATIONS
In mathematics and applications, the objects with many 
symmetries attract much attention. In the case of Riemannian 
geometry, these are Riemannian manifolds with constant 
sectional curvature, namely the Euclidean plane, the sphere 
and the hyperbolic space (any of these, in arbitrary dimension). 
Geodesics in these spaces are easily described. In the Euclidean 
plane they are straight lines, in the sphere they are the main 
circles. In the hyperbolic space the description depends on the 
model. The generalization of manifolds of constant sectional 
curvature to Finsler geometry are Finsler spaces with constant 
flag curvature, see for example [4] for details.

In the paper [13], the relation of the Randers metrics which 
arise from the Zermelo navigation data (M, h, W), where the 
vector field W is an infinitesimal homothety were studied and 
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geodesics of these Randers metrics were described. If, moreover, 
the Riemannian manifold (M, g) has constant curvature, it 
was proved in [3] that the Randers metric obtained this way 
has constant flag curvature. Conversely, any Randers metric 
with constant flag curvature arise as the solution of Zermelo 
navigation problem on the Riemannian manifold (M, g) with the 
influence of an infinitesimal homothety W. As a corollary, the 
trajectories of the Zermelo navigation problem in this situation 
are described.

Other special situations have recently been studied. For 
example, Zermelo navigation problem on special manifolds in 
dimension 3 and simulations in this situation were presented by 
p. Kopacz in [8]. Zermelo navigation problem on manifolds with 
special metrics was investigated for example in recent papers 
[1] and [2] by N. Aldea and P. Kopacz. It is also possible to study 
the problem using the calculus of variations, see for example 
the paper [10] by E. J. McShane. We mention also a recent paper 
[12] by R. Paláček and O. Krupková with the approach using the 
Euler-Lagrange equations and simple simulations. For other 
aspects of the Zermelo problem related to variational geometry 
see the recent paper [15] by Z. Urban and D. Krupka. The 
numerical approach to the Zermelo navigation problem using 
mathematical software was presented for example in the paper 
[11] by M. Mureşan. For possible generalizations of the problem, 
with fixed or moving obstacles, see the paper [9] by B. Li, Ch. Xu, 
K. L. Teo and J. Chu.

5. CONCLUSION
The mathematical formulation of the Zermelo navigation 
problem using Riemannian and Finsler geometry was 
introduced. Some basic ideas were illustrated and important 
relations were given. Some special situations with the complete 
solution of the problem were mentioned. The research in other 
special situations and other possible ways of the description 
of the problem were indicated. The potential for further study 
is huge, because the problem is too complex to be solved 
explicitly in full generality.
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