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Abstract*

The Remotely Operated Vehicle (ROV) plays a crucial role in underwater surveys but 
faces challenges in complex environments with unmeasured variables, leading to 
inefficiencies in navigation. This paper develops a motion control solution for ROVs 
that utilizes Artificial Neural Networks (ANNs) to enhance control quality in response 
to environmental impacts. Firstly, the authors develop an Adaptive Fuzzy Control 
(AFC) to control ROV movements under varying environmental conditions, allowing 
for the collection of operational datasets. Next, the ROV motion controller is designed 
based on the ANN architecture to enhance control quality. Finally, experimental 
scenarios using MATLAB demonstrated that ANNs markedly improve control accuracy 
and overall performance for ROVs when following predetermined trajectories. This 
emphasizes their substantial potential in advancing autonomous marine applications. 

Sažetak
Daljinski upravljana ronilica (engl. Remotedly Operated Vehicle – ROV) ima važnu 
ulogu u podvodnim istraživanjima, ali se suočava s izazovima u složenim okruženjima 
s neizmjerljivim varijablama, što dovodi do neučinkovitosti u navigaciji. U ovom se radu 
razvija rješenje za upravljanje kretanjem ROV-a koje se koristi umjetnim neuronskim 
mrežama (engl. Artificial Neural Networks – ANN) kako bi se poboljšala kvaliteta 
upravljanja kao odgovor na utjecaj iz okoliša. Autori razvijaju neizrazito adaptivno 
upravljanje (engl. Adaptive Fuzzy Control – AFC) za kontrolu gibanja ROV-a u promjenjivim 
okolišnim uvjetima, što omogućuje prikupljanje operativnih skupova podataka. Regulator 
za kretanje ROV-a dizajniran je na temelju umjetne neuronske mreže (engl. ANN) kako 
bi se poboljšala kvaliteta upravljanja. Konačno, eksperimentalni scenariji provedeni 
u MATLAB-u pokazali su da umjetne neuronske mreže značajno poboljšavaju točnost 
upravljanja, kao i ukupne performanse ROV-a pri praćenju unaprijed zadanih putanja. To 
naglašava njihov značajan potencijal u unaprjeđenju autonomnih pomorskih aplikacija.
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1. INTRODUCTION / Uvod
In the maritime industry, geological exploration and mapping 
of the ocean floor are necessary for helping sailors plan accurate 
routes to avoid collisions with underwater obstacles such as 
reefs. Significant oil and gas reserves are also located on the 
ocean floor, making geological inspections for exploration and 
exploitation essential. However, these exploration efforts face 
numerous challenges, as reserves are often situated beneath 
the ocean’s surface. Technological developments have outfitted 
marine vehicles with equipment that helps prevent operator 
errors, which can lead to maritime accidents, while also 
improving operational efficiency [1]. This depth necessitates 

using specialized equipment, such as ROVs, that can function 
effectively in harsh marine environments. Underwater 
operations are always affected by unmeasured factors [2], such 
as currents, tides, and obstacles. As a result, operating ROVs 
requires adhering to high standards to ensure stable operation 
and precise control. In particular, the motion control process 
must minimize the effects of environmental disturbances 
to keep ROVs stable and operate accurately in deep-sea 
conditions. The motion control of the ROVs involves several 
key factors that ensure high-efficiency operation in offshore 
environments. The studies have focused on maintaining ROV 
stability at a fixed speed [3] and at varying speeds while moving 
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along a specified path [4]. These operations are influenced by 
various nonlinear factors and disturbances. Maintaining the 
correct direction while following the desired path is crucial to 
keep the ROV motion precise [5]. Further, the modern technique 
used to maintain direction while hovering [6], along with efforts 
to reduce energy consumption [7], is essential for the ROV’s 
effective operation in actual conditions [8]. When the ROV 
reaches its working position, the dynamic positioning mode is 
activated to perform specific tasks. Concurrently, reducing the 
transmission delay of control signals from the mother ship is 
explored [9]. Besides, some studies have been conducted on 
achieving desired tilting motions to maintain balance and fuel 
economy [10] and adjust the tilt angle along the path according 
to specific mission requirements [11]. Therefore, the control 
algorithm is the most crucial factor, as it allows the ROV to adapt 
to nonlinearities and environmental disturbances.

Modern approaches to marine vehicle motion control have 
employed traditional control methods, notably Proportional-
Integral-Derivative (PID) controllers [12-13], combined with 
advanced intelligent techniques to navigate predefined paths 
and maintain precise positional stability [14-15]. Nonetheless, a 
significant gap exists in the literature concerning the influence 
of actual environmental conditions on operational efficacy. To 
enhance navigational precision, sophisticated methods have 
been incorporated into the motion control framework. Fuzzy logic 
techniques are commonly utilized to dynamically tune controller 
parameters [16-17], while structural parameter optimization 
is frequently executed through particle swarm optimization 
algorithms, thereby improving the fidelity of operational signals 
[18-19]. The ant colony optimization has also demonstrated 
effectiveness in generating robust control parameters that 
facilitate collision avoidance in complex operations [20].

Artificial Intelligence (AI) has emerged as a crucial trend 
across various sectors due to its remarkable adaptability and 
flexibility. Its application in ROV control has led to significant 
advancements. AI-based control methods gradually supersede 
traditional algorithms, as they can adapt to diverse situations, 
process vast amounts of data, and learn from experience. One 
widely discussed approach involves using adaptive neural 
networks that determine linear controller parameters, known 
as ANNFOPID [21], which help minimize disturbances and 
manage uncertainties, ultimately enhancing trajectory tracking 
for autonomous underwater vehicles. Furthermore, using ANNs 
to control ROVs via sensor signals with pulse outputs ensures 
stability even in varying current conditions [22]. To minimize the 
impact of nonlinear components, a minimal learning parameter 
(MLP) is used to approximate control signals in dynamic system 
modeling [23]. Convolutional Neural Networks (CNNs) assess 
ambient conditions for the ROVs, though their effectiveness is 
limited in low-light situations [24]. In motion control, evolutionary 
algorithms optimize Neural Network (NN) parameters to reduce 
computation time [25] and maintain stability during dynamic 
system failures [26]. Recurrent Neural Networks (RNNs) help reduce 
vibration amplitudes in ROV motion by monitoring uncertain 
states [27]. Additionally, the NNs can adaptively adjust controller 
parameters to environmental changes [28] and simplify complex 
data processing in underwater vehicles using a combination of 
unweighted NNs and fuzzy logic [29]. Quality-based controller 
datasets are essential for developing stable and adaptive control 
models for ROVs under varying operating conditions.

This study proposes an ANN approach to improve the quality 
of ROV motion control under environmental influences. The 
main contributions are summarized as follows: i) Developing 
an AFC controller with parameters adjusted to accommodate 
input error variations and reduce the impact of nonlinear 
components during ROV motion; ii) Building an ROV motion 
controller based on the ANN, trained from a dataset of ROV 
operations under the environmental influence applying the 
AFC controller; iii) Verifying the proposed solution to control 
ROV motion according to two scenarios under environmental 
impact to evaluate the effectiveness of the proposed solution. 

This paper is organized as follows: Section II provides an 
overview of ROV modeling, including remarks that outline the 
stages and goals of the study. Section III details the establishment 
of the basic AFC solution as well as the proposed ANN solution 
for controlling ROV motion. Section IV presents the simulations 
and testing scenarios. Finally, Section V concludes the paper 
and discusses future directions for the study.

2. MATERIAL AND METHOD / Materijal i metoda
2.1. Remotely operated vehicle model / Model daljinski 
upravljane ronilice (engl. ROV)
The motion of underwater vehicles is analyzed in six degrees 
of freedom using two coordinate systems. One of these is the 
body-fixed frame XYZ, which is related to the submerged vehicle. 
The other is the Earth-fixed frame X0Y0Z0, which describes the 
vehicle’s motion concerning the Earth (as shown in Fig. 1). Based 
on these two primary reference frames, the kinematic equations 
of the ROV are defined as follows [30]:

Figure 1 The coordinate system of  the ROV motion
Slika 1. Koordinatni sustav kretanja ROV-a

					           (1)
where η denotes the position and heading of the ROV within the 
Earth’s coordinate system, while v represents the linear velocity 
along the body coordinate system of the ROV. The dynamic 
equation of the ROV is given by [31]

		        (2)
in which M represents the total inertial mass of the ROV, 
including its augmented mass. C refers to the combined effects 
of the Coriolis force and the Centrifugal force generated by the 
actual weight of the ROV. Additionally, D signifies the damping 
component, which encompasses both linear and nonlinear 
elements. The variable g represents the vector of gravitational 
acceleration acting on the vehicle as it moves, while τ[τx,τy,τz] 
denotes the vector that sums the forces and moments generated 
by the propulsion system and the rudder.
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Remark 1: Environmental disturbances significantly affect 
the dynamics of ROV motion, introducing nonlinear factors that 
are challenging to quantify. As a result, the performance of the 
motion control system deteriorates.

In actual operations, the current is the main component 
affecting the ROVs during underwater missions. The impact of 
currents on the body alters the motion velocity, denoted as v. 
Therefore, it is assumed that the motion can be expressed using 
the relative velocity vr [32] as follows: 

					           (3)
The axial current velocity ϑc [uc,vc,wc] can be converted to           

ϑc
e[uc

e,vc
e,wc

e]T, which is the current velocity along the Earth 
frame using the rotation matrix. The components of the vector  
ϑc

e are expressed as

  			         (4)

whereas Vc represents the current velocity, αc is the drift angle, and 
the slip angle βc describes the direction of the current velocity.

Remark 2: Using conventional methods to control nonlinear 
ROV motion is inefficient. Additionally, as noted in Remark 1, the 
control deviation will increase significantly due to environmental 
disturbances.

2.2. Stages and goals / Faze i ciljevi
The AFC controller exhibits good response characteristics to 
nonlinear effects due to its capability to adapt to variations in 
input errors. However, the underwater environment introduces 
numerous error components that the basic solution does not 
handle effectively. To address this issue, it is essential to enhance 
the quality of control parameters using the ANN that has self-
learning capabilities. The improvement aims to reduce random 
errors caused by the environment. Building an ROV control 
solution involves three main stages, as follows: 
	- Stage 1 – Collecting the training dataset: The AFC controller 

is designed to control ROV motion by adjusting structural 
parameters to minimize input errors and reduce nonlinear 
effects. During operation, AFC controller values are compiled 
into a training dataset for the ANN algorithm, which improves 
quality and simplifies computations by eliminating fuzzy rules.

	- Stage 2 – Building the ANN controller: The ROV motion 
controller employs an ANN structure, as outlined in 
Algorithm 1. After training, the optimal neuron weights are 

integrated into the controller, enhancing its adaptability 
and response to environmental changes.

	- Stage 3 – Testing and evaluation: The proposed solution was 
tested in two scenarios simulating actual ROV operations: 
straight and short trajectory. The results were compared 
with other solutions based on quality assessment criteria, 
which highlighted its effectiveness.

3. MATERIAL AND METHOD / Materijal i metoda
3.1. Fuzzy Adaptive Control for ROV Motion / 
Neizrazito adaptivno upravljanje za kretanje ROV-a
This study introduces a fuzzy technique for adaptive tuning 
of basic PID controller parameters [33], referred as the 
AFC controller. This technique can adjust the parameters                                  
K(Kpf ,Kif , Kdf ) in response to changes in the input error. The 
AFC control structure [34] for the adaptive tuning of the basic 
controller parameters is defined by

		        (5)

The fuzzy model consists of a set of rules along with their 
corresponding results [35]. The If-Then rules are described as follows: 

	                         (6)
with A1

i,A2
i,…An

i and B i representing the fuzzy sets of input and 
output signals. This paper employs a fuzzy model based on 
Mamdani rules, utilizing the Max-Min inference rule and the 
Centroid defuzzification method. q represents the number of If-
Then rules, and   denote the Membership Functions (MFs). 
The outputs of the fuzzy model K are given by 

			         (7)

Let ∅( )=[∅1,∅2,…,∅q]T∈Rq represent a fuzzy basic vector [36] 
that is defined as

			         (8)

The fuzzy sets are adjusted using the parameter vector 
δT, which corresponds to Bi(i=1,2,...q). The output of the fuzzy 
model is presented as linearized parameters as follows:

				          (9)
The fuzzy model is based on the input reference value, the error e, 

and the error velocity de, to adjust the values ​​of the three adaptation 
coefficients Kpf , Kif  and Kdf . The relationship between the input and 
output values ​​is represented in 3D space, as illustrated in Fig. 2.

(a)                                                                                (b)                                                                                 ((c)
Figure 2 Relationship between inputs e, de and outputs. (a) Output  Kpf; (b) Output Kif  ; and (c) Output Kdf

Slika 2. Odnos između ulaza e, de i izlaza. (a) Izlaz Kpf; (b) Izlaz Kif  ; i (c) Izlaz Kdf
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Fig. 2 illustrates how each fuzzy rule produces an output 
value based on changes in e and de. In the case of the output Kpf 
as shown in Fig. 2a, when both e and de are negative, Kpf increases 
to a positive value to correct the reduction in error. Conversely, 
Kpf decreases when e and de become positive. For the output Kif, 
depicted in Fig. 2b, the correction is also inversely proportional 
to the input error. However, the correction value for Kif  is set 
much lower to prevent significant fluctuations. The response of 
Kdf, shown in Fig. 2c, must be flexible to ensure system stability. 
Specifically, if the e and de values exceed acceptable thresholds 
(either too high or too low), Kdf will increase sharply to respond 
to these rapid changes. Besides, as e and de approach zero, Kdf 

tends to decrease slightly to help maintain system stability.

3.2. The ROV Motion Control for Using Artificial Neural 
Network / Upravljanje kretanjem ROV-a korištenjem 
umjetnim neuronskim mrežama
The AFC solution for controlling ROV motion is effective only 
with a defined range of flexible parameter adjustments. The 
influence of environmental conditions, as noted in Remarks 1 
and 2, can result in significant discrepancies in control response. 
Fig. 3 provides an overview of the proposed solution to improve 
the motion control of the ROV. This paper proposes an ANN to 
enhance both the processing speed and accuracy of the ROV 
motion control, as described in Algorithm 1. The process of 
building an ROV motion controller using an ANN consists of 
four steps:
	- Step 1 - Building the NN structure: The feedforward 

architecture consists of three main components: the input 
layer, the hidden layers, and the output layer. The process 
for calculating the signals in the hidden layers using the 
nonlinear activation function is described in (11) and 
(12), whereas the determination of the network output is 
provided in (13). The input vector in(t) is represented as

				        (10)

The feedforward network is selected for its straightforward 
structure, linear computation from input to output, and state 
memory mechanisms found in more complex networks.
	- Step 2 - Training the control model: After establishing the 

NN structure, the control model carries out the training 
phase, updating the weights (ω) using the backpropagation 
algorithm in (16). The network’s performance is assessed by 
applying the mean squared error loss function in (15), which 
measures the difference between predicted outputs and 
target values from the training data.

	- Step 3 - Optimizing the NN architecture: To improve 
performance and meet control system requirements, the 
model was experimented using NNs with 2 to 8 hidden layers, 
as indicated in setup Step 1, which involved varying the value 
of m in Algorithm 1. The goal was to assess how the depth of 
the network affects convergence and processing speed.

	- Step 4 - Extracting the control model: After determining the 
optimal NN structure and completing the training, the ROV 
control model is extracted, including its architecture, weights, 
and hyperparameters. The step ensures readiness for the 
next phase: deploying and testing the model in uncertain 
environments, as outlined in steps 15 and 16 of Algorithm 1.
In this study, we utilize Hyperbolic Tangent functions for the 

hidden layer and a linear activation function for the output layer 
to attain optimal performance. The output of the hidden layer 
[37-38] is defined by

			      (11)

The output of the hidden layer  is computed as follows [39-40]:

				       (12)
where ωj  represents the weight connecting neuron i in the input 
layer to neuron j in the hidden layer. Additionally, χi denotes the 
input for neuron i in the input layer. The notation βj signifies the 
bias associated with neuron j in the hidden layer, which helps 
adjust the neuron’s activation threshold and enhances its ability 
to learn complex patterns. Similarly, the input to neuron  in the 
output layer is computed in the same way as described in (13).

Figure 3 Overview diagram of the ROV control system utilizing an ANN controller
Slika 3. Pregledni dijagram sustava upravljanja ROV-om s ANN regulatorom
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				       (13)
therein zj is the activated output from the hidden layer j, while ​ 
ω  determines its influence on the output neuron and the bias  
β  adjusts activation. Consequently, the  output value of the 
ANN is obtained through the linear activation function as [41]

			      (14)

Several evaluation criteria exist for ANN models, including 
Root Mean Square Error of Approximation (RMSEA) [42] and 
Mean Square Error (MSE) [43]. In this study, we use the MSE 
function to assess the difference between the predicted output   

 and the desired output  as follows: 

				       (15)

To optimize the learning performance of the ANN, this 
study utilizes the Levenberg-Marquardt training algorithm 
in conjunction with the Backpropagation technique [44]. 
This hybrid approach accelerates convergence by integrating 
the strengths of both Gradient Descent and Gauss-Newton 
methods, enhancing accuracy and expediting error 
minimization. The process for adjusting the weights using the 
Levenberg-Marquardt method [45] is outlined as

			     (16)
in which, ω(t) denotes the weight vector at the 𝑡 iteration with 
𝑍 being the Jacobian matrix. Besides, e(t) expresses the error at 
the 𝑡 iteration, and 𝜆 is the adjustment parameter. Depending 
on the value of 𝜆, the proposed ANN solution obtains different 
convergence values. If the value of 𝜆 is large, the ANN network 
converges slowly but stably. On the contrary, if the value of 
𝜆 is small, the algorithm converges quickly but is prone to 
fluctuations.

Algorithm 1. Designing the ROV control model based on the ANN.

Input: datasets of e(t), de/dt, and τAFC(t).

Output: The ROV control model.

1 Initialize the training parameters: epoch←500, learning 
rate←0.000001, hidden layer ← m.

2 Initialize dataset 70% for training, 15% for testing, and 15% for 
validation.

3 for 0<epoch<500 do

4 for 1 < hidden layer < m do

5 Computing zj ← (12).
6 Computing  z  ← (13).
7 Computing   ← (14).

8 If the termination condition is not satisfied, add m by 1 
and repeat Step 4.

9 end for

10 Computing the loss function MSE ← (15).
11 Determining the weight adjustment ← (16).
12 Updating the weight function ωj.

13 If the minimum loss value is not met, the epoch increases by 
1 and returns to Step 3.

14 end for
15 Exporting the ROV control model.

16 Applying the control model to maneuver the ROV in test 
scenarios.

17 end

4. RESULTS AND EVALUATIONS / Rezultati i 
vrednovanje
4.1. Configuration Parameters / Parametri konfiguracije
The specifications for this study’s ROV are based on the RRC ROV II 
model [46]. Table 1 presents the dynamic parameters relevant to 
the ROV’s performance during aquatic maneuvers. To evaluate the 
efficacy of the proposed control strategies, the authors executed 
experiments encompassing both straight-line motion control 
(Scenario 1) and path-planning motion control (Scenario 2).

Table 1 The RRC ROV II parameters
Tablica 1. Parametri RRC ROV II

Parameters Symbol Value
ROV’s Mass m 115 (kg)
Gravitational force W 1128.2 (N)

Added mass in X direction Xu 
21.1403 (kg)

Added mass in Y direction Yv  51.7 (kg)
Added mass in Z direction Zw 92.451 (kg)
Linear damping force in X direction Xu 253 (Ns2/m2)
Linear damping force in Ydirection Yv 1029.5 (Ns2/m2)
Linear damping force in Z direction Zw 1029.5 (Ns2/m2)
Nonlinear damping force in X direction Xu|u| 423 (Ns2/m2)
Nonlinear damping force in Y direction Yv|v| 747 (Ns2/m2)
Nonlinear damping force in Z direction Zw|w| 735 (Ns2/m2)

Table 2 The tuning ranges of the AFC controller
Tablica 2. Rasponi parametara za podešavanje AFC regulatora

Motions Kpf Kif Kdf

Surge [18, 30] [-3.6, 1.2] [6,   12]
Sway [12, 18] [-3.6, 1.2] [18, 24]

Heave [21, 28] [-4.2, 1.4] [21, 28]

The tuning ranges of the fuzzy functions for the AFC controller 
parameters are shown in Table 2. Thereby, adjusting the baseline 
parameters helps determine the optimal signal required to produce 
the output signal, which will serve as the training data set for the ANN.

Table 3 The ANN training parameters
Tablica 3. Parametri treniranja ANN-a

Parameter Value
Epoch 500
Total node in hidden layer 1 32
Total node in hidden layer 2 16
Learning rate 0.000001
Loss function MSE
Training Ratio 70%
Validate Ratio 15%
Testing Ratio 15%

Figure 4 Result of the ANN model training
Slika 4. Rezultat treniranja ANN modela

˙

˙

˙
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The authors develop an ANN solution to control ROV motion 
in the MATLAB 2024a environment, using a GPU configuration 
with an RTX 4060 8GB graphics and 32GB RAM, which enables 
parallel processing to reduce calculation time. The training 
parameters for the NN across different motion directions are 
detailed in Table 3. The training process was carried out over 
500 epochs to achieve optimal accuracy. Upon completion, 
a convergence value approaching 1 signified enhanced 
accuracy for the ANN. If the convergence value is inadequate, 
adjustments to key parameters, including the number of 
neurons, the choice of activation function, or the learning 
rate, should be made to optimize network performance. The 
dataset consists of 630,000 samples for each category within 
every information field, including e, de, and τAFC. Additionally, 
the training process requires standardizing the amount of 
data across the information fields and normalizing the input 
data using the Hyperbolic Tangent activation function, which 
scales the values between -1 and 1. The dataset was partitioned 
into three subsets: a training set (70%), a test set (15%), and a 
validation set (15%). The stratified division aimed to enhance the 
model’s ability to generalize, facilitating effective adaptation to 
novel input values. Training outcomes for the proposed control 
model are illustrated in Fig. 4.

The model’s performance is assessed by comparing 
the accuracy of predicted values to actual values during 
training. Shorter training durations can result in faster 
convergence and reduce the risk of overfitting, whereas 
longer training times may increase costs and require more 
powerful hardware. Table 4 shows that the proposed ANN 

model has a significantly shorter training time than a neural 
network online tuning (named NN-PID) [47] and the Adaptive 
Neuro-Fuzzy Inference System (ANFIS) [48]. As the dataset 
size increases from 20% to 100%, the training time for the 
ANN goes from 17s to 52s, while NN-PID increases from 
22s to 107s and ANFIS from 35s to 195s. The performance 
outcome indicates that the ANN is faster and more efficient. 
Additionally, the MSE for the ANN is lower than that of 
ANFIS across all data levels, demonstrating better predictive 
performance. While the ANN’s MSE decreases from 5.38 
to 0.472 with larger datasets, it remains significantly lower 
than ANFIS (4.087) and NN-PID (1.854), highlighting the ANN 
model’s effectiveness.

4.2. Results and Discussions / Rezultati i rasprava
4.2.1. Experiment of the ROV moving straight / Eksperiment 
kretanja ROV-a po ravnoj putanji
In Scenario 1, the ANN and AFC control methods are applied 
to control the ROV to follow a straight motion, starting from 
the reference position [0m, 0m, 0m] and moving to the desired 
position [20m, 10m, 20m] within a duration of 200 seconds. The 
first scenario is considered under calm sea conditions, with the 
current velocity parameters  varying in the range of 0.1m/s to 
0.3m/s, αc, and in the range of [0, 𝜋/2]. The results are shown 
in Figs. 5 and 6. Specifically, the 3D path tracking results in Fig. 
5 show that both the ANN (blue line) and AFC (red line) can 
control the ROV to follow the path in the scenario. Besides, Fig. 
6 illustrates the control signals on the directions applying ANN 
and AFC controllers, allowing for a comparison of its responses.

Table 4 The performance indices of the NN models
Tablica 4. Pokazatelji učinkovitosti NN modela

Dataset
NN-PID ANFIS ANN

Training time MSE Training time MSE Training time MSE
20% 22s 6.273 35s 9.885 17s 5.380
40% 38s 5.231 72s 7.414 22s 3.980
60% 56s 3.866 118s 6.073 34s 2.490
80% 82s 1.533 139s 3.264 41s 0.332

100% 107s 1.854 195s 4.087 52s 0.472

Figure 5 The ROV motion in Scenario 1
Slika 5. Kretanje ROV-a u scenariju 1
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Figure 6 The results of ANN and AFC controller in Scenario 1
Slika 6. Rezultati ANN i AFC regulatora u scenariju 1

The response of various control solutions, including AFC, 
NN-PID, ANFIS, and ANN, is summarized in Table 5. The ANN 
has the slowest response time among the solutions, especially 
during a surge. The proposed controller is slower than the ANFIS 
controller by 0.6s, the NN-PID by 0.2s, and the AFC controller 
by 1.7s. However, the ANN solution shows improved response 
fluctuations. In the y-direction (sway), the ANN results are lower 
by 0.03m, 0.02m, and 0.04m compared to ANFIS, NN-PID, and 

Table 5 Comparison of controller responses in Scenario 1
Tablica 5. Usporedba odziva regulatora u scenariju 1

Solution
AFC [8] NN-PID [47] ANFIS [48] Proposed ANN

Surge Sway Heave Surge Sway Heave Surge Sway Heave Surge Sway Heave
Response time (s) 53.3 53 53.6 54.8 54.8 54.7 54.4 54.1 54.7 55 55 55
Fluctuation (m) 0.62 0.32 0.32 0.56 0.3 0.23 0.56 0.31 0.23 0.55 0.28 0.22
Overshoot (%) 2.35 2.34 1.6 1.7 2.2 1.3 1.9 2.23 1.47 1.65 2.1 1.1

AFC controllers, respectively. Similarly, the recorded overshoot 
demonstrates that the ANN shows better response results. 
Specifically, in the heave, the overshoot of ANN is the lowest 
among the approaches, as lower than 0.37%, 0.2%, and 0.5% 
for ANFIS, NN-PID, and AFC controllers, respectively. Therefore, 
although the response time is slower, other factors in evaluating 
the response are better, showing the capability of the ANN 
proposed in this study.

Figure 7 The path of the ROV motion in Scenario 2
Slika 7. Putanja kretanja ROV-a u scenariju 2
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4.2.2. Maneuvering the ROV along its path / Manevriranje 
ROV-om duž zadane putanje
To comprehensively assess the adaptability and responsiveness 
of the ANN controller under realistic operating conditions for 
the ROV, Scenario 2 was executed, taking into account the 
current dynamics. The scenario involved a more intricate control 
path: the ROV first moved a straight path along the surge for 
10m, then transitioned to a straight line in the y-direction for 
5m, followed by a descent of 10m, culminating at the endpoint 
coordinates [10m, 10m, 10m]. Notably, the current velocity was 
elevated, exceeding 0.5m/s.

The simulation outcomes, illustrated in Figs. 7 and 8 reveal 
that the ANN controller (depicted by the blue line) adheres more 
closely to the predefined trajectory than the AFC, represented 
by the red line. Furthermore, Fig. 8 indicates that the control 
responses along each axis utilizing the ANN controller 
demonstrate superior performance relative to those of the 
AFC, highlighting the effectiveness of the ANN in managing 
complex control scenarios amid varying current conditions. In 
Scenario 2, the ROV operates in a strong current, demonstrating 
the advantages of the ANN controller in mitigating fluctuations 
and overshoots. The comparison results of the solutions are 
summarized in Table 6. In the surge direction, the response time 
of the ANN solution was recorded as 30.5s, which is 0.3s slower 
than ANFIS, 1.5s slower than NN-PID, and 1s slower than AFC. The 
ROV operates under the influence of flows with slow-changing 
characteristics, meaning that the accuracy of control responses 
is prioritized over response time. As a result, the findings from 
the ANN research indicate a longer response time compared to 

the alternative solution, which aligns with the characteristics of 
the control system. Additionally, the computer’s performance 
remains within acceptable limits, with CPU usage at 10%, GPU 
at 5%, VRAM at 14%, and RAM at 78%.

Nevertheless, the ANN outperforms both alternatives when 
examining fluctuation and overshoot metrics. Specifically, the 
ANN’s sway fluctuation is lower than that of ANFIS at 0.02m, NN-
PID at 0.01m, and AFC at 0.04m. Concerning overshoot, the ANN 
recorded a minimum value of 0.64%, which is lower than ANFIS 
of 0.17%, NN-PID of 0.48%, and AFC of 2.18%. Although the ANN 
exhibits a longer response time, it maintains more excellent 
stability under identical environmental conditions compared 
to the ANFIS, NN-PID, and AFC, effectively addressing the 
concerns outlined in Remarks 1 and 2. However, the study faces 
limitations in training data diversity and deep feature extraction 
methods, which need to improve the control force accuracy in 
ROV operations during sudden environmental changes.

5. CONCLUSION / Zaključak
This paper presents a novel ANN solution designed to improve 
the control of ROVs over traditional control systems. The AFC 
framework is established to effectively address variations 
in input errors resulting from the nonlinearities of the 
operating environment. Then, the ANN is trained on various 
datasets, demonstrating self-learning capabilities that enable 
adjustments to optimize the motion control of ROVs. This 
adaptability is particularly relevant in complex environments 
where external factors, such as fluctuating water currents and 
turbulent conditions, pose significant challenges. Experimental 

Figure 8 Response of the controllers implemented in Scenario 2
Slika 8. Odziv regulatora implementiranih u scenariju 2

Table 6 Summary of controller response comparisons in Scenario 2
Tablica 6. Sažetak usporedbi odziva regulatora u scenariju 2

Solution
AFC [8] NN-PID [47] ANFIS [48] ANN 

Surge Sway Heave Surge Sway Heave Surge Sway Heave Surge Sway Heave

Response time (s) 29.5 26.6 26.7 29 27.2 29.1 30.2 27.8 29.9 30.5 28 30
Fluctuation (m) 0.44 0.45 0.28 0.21 0.42 0.18 0.23 0.43 0.17 0.21 0.41 0.15
Overshoot (%) 1.78 3.09 2.82 0.98 2.56 1.12 0.7 2.36 0.81 0.6 2.3 0.64
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results illustrate the ANN’s performance in controlling the ROV 
under two challenging scenarios, indicating an improvement 
over conventional control solutions. Additionally, there is 
potential for refining the training process with advanced deep-
learning algorithms, which could facilitate the identification 
of complex patterns and features within the input data, 
supporting self-adjustment in environments with numerous 
unmeasured variables and complicating factors. To improve 
the dataset’s quality, future studies should test under different 
operating conditions. Additionally, applying advanced deep 
learning techniques can help accurately determine the 
control force needed for ROV movement in unpredictable 
environments.
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