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Abstract*

Jack-up Rigs (JuRs) are integral to offshore resource extraction, mainly due to their 
need for robust structural stability in challenging marine environments. This study 
introduces a Multi-Cascade Neural Network (MCNN) framework designed to evaluate 
the structural integrity of JuRs. We implement a Fast-Marching Algorithm (FMA) to 
process the vibration data obtained from a Multi-Sensor Network (MSN) strategically 
installed at critical locations on the rig. The FMA facilitates the construction of an 
overall state ridge from the vibration datasets, which, over time, informs the MCNN-
based assessment model. During an 8-week evaluation period, the assessment 
model was rigorously tested, resulting in a structural state classification value, which 
effectively encapsulated the rig’s overall condition. The application of our proposed 
methodology in various test scenarios demonstrated promising outcomes, validating 
the efficacy of our approach in structural assessment for JuRs.

Sažetak
Naftne platforme ključne su za eksploataciju morskih resursa, ponajprije zbog potrebe za 
robusnom strukturnom stabilnošću u zahtjevnim morskim uvjetima. Ovaj rad predstavlja 
okvir višekaskadnih neuronskih mreža dizajniran za procjenu strukturne cjelovitosti 
platformi. Implementiran je algoritam brzog kretanja (Fast-Marching Algorithm, FMA) 
za obradu podataka o vibraciji prikupljenih s pomoću višesenzorske mreže (Multi-Sensor 
Network, MSN) strateški postavljene na ključnim lokacijama platforme. FMA omogućuje 
kreiranje sveukupnog „stanja“ iz podataka, koje se tijekom vremena koristi u MCNN 
modelu procjene. Tijekom osmotjednog razdoblja evaluacije model je temeljito testiran, 
pri čemu je postignuta klasifikacijska vrijednost strukturnog stanja koja učinkovito 
odražava cjelokupno stanje platforme. Primjena predložene metodologije u različitim 
testnim scenarijima pokazala je obećavajuće rezultate, potvrđujući učinkovitost pristupa 
u procjeni strukturne cjelovitosti platformi.

* Corresponding author

KEY WORDS
fast-marching algorithm
multi-sensor network
neural network
offshore structure
structural displacement

KLJUČNE RIJEČI
algoritam brzog kretanja
višesenzorska mreža
neuronska mreža
offshore konstrukcija
strukturna istisnina

1. INTRODUCTION / Uvod
The oil and gas industry have made significant advancements 
alongside the processes of industrialization and modernization, 
particularly in the use of modern technologies for drilling rigs 
involved in oil and gas exploration and extraction (expressed in 
Fig. 1). These technologies play a crucial role at nearly every phase 
of production, spanning from manufacturing to optimizing 
operational efficiency in offshore operations. Among these 
advancements, the JuRs stand out as significant innovations 
in offshore extraction [1]. Their adaptable architectures and 
operational modalities enhance resource recovery efficiency, 
resulting in improved extraction processes. However, these 
offshore rigs face continuous challenges posed by harsh working 
conditions [2] or failing the maritime regulatory framework [3]. 

Key environmental parameters impacting structural integrity 
include wave dynamics, aerodynamic forces, hydrodynamic 
currents, and vibrational characteristics [4]. These variables 
can markedly affect the stability of structures, leading to 
displacements or potential failure [5]. Such vulnerabilities pose 
serious risks during extraction operations if not adequately 
monitored and maintained promptly.

Structural instability arises from external influences and the 
degradation of connections within the structure. These factors can 
be classified into the following categories [6]: Serviceability limit - 
The limit states and limit parameters of a structure, according to 
design, ensure stability during use [7]; Fatigue limit - The material’s 
limit state can result in the degradation of structural connections 
when exposed to particular environmental condition; Ultimate 
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limit - Exceeding the maximum tolerance value for structural 
deformations can damage the structure; Accidental Limit - The 
integrity of the structural connections is compromised, leading 
to a failure in the structural system and posing a significant safety 
risk. Consequently, numerous research initiatives are dedicated to 
advancing structural health monitoring systems, primarily aimed 
at evaluating critical parameters that influence the structural 
integrity and performance of buildings and infrastructure.

Figure 1 Tam Dao 05 Jack-up rig operating in Vietnam Sea
Slika 1. Tam Dao 05, naftna platforma – Vijetnamsko more

The stability of structural linkages in offshore structures is 
predominantly influenced by mechanical inaccuracies, which can 
be effectively managed through advanced precision machining 
techniques or intelligent algorithms [8]. Furthermore, operational 
challenges at uncertain connection points can provoke external 
forces that produce vibrations, causing structural displacements 
[9-10]. Should these displacement values surpass permissible 
thresholds, there is a risk of compromising the facility’s geometric 
integrity, potentially culminating in structural failure. Last but 
not least, Mousavi et al. (2020) utilized Deep Learning (DL) 
methodologies to accurately assess vibration levels experienced 
during various operational conditions [11]. Besides, signal 
inaccuracies during the collection of sensors monitoring 
data contribute to decreased accuracy in structural health 
assessments [12]. Data acquisition in harsh environments, such as 
marine conditions, introduces significant deviations and reduces 
measurement accuracy [13]. In response, Zhang et al. (2021) [14] 
proposed a distributed recursive filter to reduce measurement 
errors caused by environmental disturbances. Most studies 
mainly focus on improving the quality assessment of operations 
without considering the overall integrity of the structure.

For offshore projects with complex structures like JuR, 
monitoring at a local area that has not accounted for the 
overall kinetic characteristics of the structure can be ineffective. 
Therefore, Corneliu et al. (2013) [15] examined Sensor Network 
(SN) configurations to optimize the quality of monitoring datasets. 
On the other hand, the stability of the construction depends on 
the uniformity and strong connection between the components, 
while local measurements can easily miss imbalances in these 
structural parts. Thus, deploying the MSN at key positions helps 
collect data over time [16], more accurately reflecting the overall 
condition of the structure, and providing a more reliable basis for 
assessing construction health [17-18]. Additionally, processing 
measurement data with intelligent solutions such as Fuzzy [19] 

enables the detection of how structural deviations change over 
time. For large datasets, Artificial Intelligence (AI) provides many 
advantages in analysis and developing evaluation models [20-
21], due to its ability to identify abnormal features in construction 
data. In which Saadeldin et al. [22] developed a machine learning 
model to predict the vibrations during drilling operations based 
on surface data, thereby improving stability and reducing 
downtime. Altindal et al. [23] proposed an anomaly detection 
framework for multivariate drilling data, enhancing fault diagnosis 
capabilities under actual operating conditions. Meanwhile, 
Puruncajas et al. [24] applied the Convolutional Neural Networks 
(CNNs) to classify the structural states of jacket foundations using 
vibration signals, achieving high accuracy without the need for 
finite element models. In particular, the Siamese Neural Network 
(SNN) offers potential solutions for quickly detecting abnormal 
points between datasets [25], and deep learning methods excel 
in assessing the construction’s status in real time [26].

To enhance the speed and efficiency of processing big data, 
various popular dimensionality reduction techniques have 
emerged. Among these, the Principal Component Analysis 
(PCA) is recognized as a linear method [27]. Although the PCA is 
computationally efficient and straightforward, it often overlooks 
nonlinear characteristics and fails to adequately represent the 
uneven propagation of fluctuations in data from the MSNs. On 
the other hand, t-distributed Stochastic Neighbor Embedding 
(t-SNE) is an effective nonlinear technique utilized for data 
visualization and cluster detection. However, it is sensitive 
to perplexity parameters, incurs a high computational cost, 
and struggles to maintain spatial and temporal propagation 
information [28]. Kernel PCA (KPCA) [29] offers an extension 
of PCA into the nonlinear realm, enabling the capture of more 
intricate relationships within the data. The proposed approach 
also demands significant computational resources and proves 
challenging to apply to large-scale datasets. In contrast, the 
FMA excels by directly preserving the propagation process of 
vibrations in both the spatial and temporal domains [30]. This 
algorithm capability facilitates the construction of health ridges 
that reflect the overall structural changes within a building, 
demonstrating that the FMA algorithm is useful for reducing the 
dimensionality of measurement datasets derived from MSNs.

This study develops an assessment model for evaluating the 
overall state of JuR structures using the MCNN. Initially, MSN is 
strategically positioned at critical locations within the structure 
to monitor its vibration displacement. Subsequently, a JuR state is 
constructed using the FMA, enabling a comprehensive evaluation 
of JuR structures over time by analyzing variations in the ridge 
profile and the acceleration of ridge peak motion. Finally, this 
study develops an MCNN assessment model to examine the 
characteristics of monitoring ridge maps as they change over time. 
The analysis yields precise assessments of the structural condition, 
thereby ensuring the safety and integrity of the structure.

The structure of this paper is delineated as follows: Section 2 
outlines the implementation phases and objectives of the study, 
introducing the FMA framework employed to scrutinize data 
gathered from MSNs. Section 3 elaborates on developing a state 
assessment model utilizing the MCNN methodology. Section 4 
presents various experimental scenarios alongside a discussion 
of the resulting outcomes. Finally, Section 5 encapsulates the 
conclusions drawn from the study and digests potential issues 
for future study.
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2. MATERIAL AND METHOD / Materijal i metoda
2.1. Stages and goals / Etape i ciljevi
The structural characteristics of the JuR in operating modes 
are closely related to the balance between the floor and the 
leg connections. An overview of the MSN layout and the signal 
processing process in the proposed model is illustrated in Fig. 2. 
The JuR structural assessment system consists of three main stages:
	- Stage 1: Establishing an MSN to measure the vibration at key 

points of the structure.
	- Stage 2: Analyzing the vibration data using the FMA to 

create ridge maps showing structural state.
	- Stage 3: Developing an assessment model using MCNN to 

analyze the time evolution of ridge data, thus providing a 
specific evaluation of the structure’s state.

This study assesses the integrity of the JuR model using 
vibration data from a monitoring sensor network. We created an 
MCNN framework with an FMA algorithm that generates ridge 
maps illustrating the structure’s dynamic state. By analyzing these 
ridge patterns, the framework effectively identifies changes in 
structural integrity, informs managers on maintenance strategies, 
and improves the structure’s safety and reliability.

2.2. Analyzing the vibration data set / Analiza skupa 
podataka o vibracijama
In assessing the stability of the JuR structure, it’s essential 
to ensure uniformity across all locations on the main deck. 
Additionally, the lifting process must be stable and synchronized 
at all legs of the rig [31-32]. Conversely, during exploration 

Figure 2 Overview of the MCNN assessment model
Slika 2. Pregled MCNN modela procjene

Figure 3 Vibration values measured on the experimental model UT-JuR 01
Slika 3. Vrijednosti vibracija izmjerene na testnom modelu UT-JuR 01 
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drilling mode, prioritizing the structure’s stability is critical [33]. 
Consequently, deploying sensors at local points has proven 
ineffective for evaluating the overall integrity of the structure. 
This study proposes an assessment solution that employs an 
MSN to monitor the structure’s vibrations [34-35] (expressed in 
Fig. 3). The collected data will be analyzed and transformed into 
a ridge map, which illustrates the structural condition through 
the following two phases:

Phase 1 - Gathering the vibration data: The input data undergo 
preprocessing to eliminate measurement noise and enhance the 
efficiency of the training process [36]. Data scaling improves the 
effectiveness of NN training, especially for developing reliable 
state assessment models. The data are scaled across J columns, 
ranging from 0 to 1024. Assuming that at k measurements, we 
take the ith sample for each sensor location j, we have

 

		        (1)

Let  and  denote the largest and smallest values in 
column j, respectively. Consequently, the elements of matrix Z 
are scaled as

 			         (2)

The authors employed experiments on the UT-JuR 01 model 
to collect displacement data sets from an SN. The sampling 
rate was set at 0.1 second, and each measurement lasted for 10 
seconds, utilizing an STM32F4 microprocessor. Specifically, the 
experiments were conducted 16 times per day over a period 
of 8 weeks, resulting in a total of k = 896 measurements. Each 
measurement consisted of 100 readings (I) from 8 monitoring 
sensor points (J). The raw data set  from the SN can 
be represented as [24]

 	       (3)

From this, the aggregate measurement data matrix is 
presented as follows:

            (4)

Phase 2 - Transforming Multi-Dimensional Data to One-
Dimensional Ridges: We utilize the FMA to evaluate construction 
state data acquired from our sensor network. The process 
commences with normalizing sensor readings to ensure 
consistency across the dataset. We then map these measurements 
onto a mesh grid, establishing connections to the sensor 

nodes using Dijkstra’s algorithm for effective pathfinding. The 
progression ridges, representing the interrelation of the observed 
sensor values, are subsequently optimized by applying the 
Eikonal equation, which incorporates the influence of structural 
vibrations. This methodology facilitates a comprehensive 
assessment of the structural condition over time. The data analysis 
procedure adheres to the steps delineated in Algorithm 1 [37].

Algorithm 1 Building a ridge map to monitor the state of JuR 
structure

Input: Vibration dataset   measured from MSN

Normalization bounds: , 
Thresholds: Acceptance ← ε, Ridge stability ← δ, Max 
iterations ← Niter

Output: Ridge map  representing JuR structural states

1 Initialize normalize all measurements: ← (2)
2 Initialize mesh grid G(x,y) over normalized axes
3 Initialize sets:
4 Acceptance set A←{p∈G‖∇U(p)‖=F(x,y)}
5 Consideration set C ← initial ridge vertices                                        
6 Trial set T ← neighbors of C in G                                          
7 iter ← 0
8 while (iter ˂ Niter) do
9 Selecting the landmark and endpoint (pl , pe) ∈ C 

10 Expanding trial set T ← T ∪ neighbors (pl , pe)
11 for each q ∈ T do
12 Computing the optimal distance:

13  (5)
14 Moving acceptance criterion q from T → A
15 if  fij(q) ≤ ε then
16 Moving acceptance criterion q from T → A 
17 end if
18 end for
19 Building sub-ridges   
20 Updating consideration set C ← A ∪ 
21 if no new points accepted Δ  < δ then
22 break
23 end if
24 iter ← iter + 1
25 end while
26 Drawing the final ridge map  ← A
27 end

This study utilizes Algorithm 1 to analyze the structural state 
data, yielding a detailed ridge map that characterizes the JuR’s 
structural condition. Algorithm 1 incorporates several quantities, 
including the sets A, C, and T, along with the threshold values ε 
and δ, as well as (5), all of which facilitate the selection of points 
on the grid G(x,y). The ridge diagram  is constructed directly 
from the normalized vibration data, providing an accurate 
representation of changes in the structural state. In case of the 
structure is stable, the ridge maintains a regular shape; in contrast, 
any deformation of the ridge indicates that the structure is in an 
abnormal condition. The FMA synthesizes multi-dimensional 
data from measurement sensor points into a unified ridge 
representation. Consequently, this approach not only evaluates 
the overall structure effectively but also streamlines the data 
sampling process, enhancing the precision of the MCNN model.
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3. DESIGNING THE MCNN MODEL / Projektiranje 
MCNN modela
The MCNN model is based on a Siamese neural network 
architecture using one-shot learning, allowing for a multi-
cascade network for classification by comparing feature 
vectors. The ridge dataset is divided into three subsets: Anchor 
(reference for comparison), Normal (low-level non-dangerous 
vibrations), and Abnormal (states with intense vibrations that 
may lead to collapse).

Table 1 Structure of each cascade in the MCNN model
Tablica 1. Struktura pojedine kaskade unutar MCNN modela

Block-layer Name Size/ Value

1 ReflectionPad-Convolutional-ReLU Kernel-size: 11×11

2 BatchNorm

3 ReflectionPad-Convolutional-ReLU Kernel-size: 05×05

4 BatchNorm

5 ReflectionPad-Convolutional-ReLU Kernel-size: 03×03

6 BatchNorm

7 ReflectionPad-Convolutional-ReLU Kernel-size: 03×03

8 Fully Connected

9 Sigmoid [38] [0,1]

The MCNN assessment model utilizes multiple network 
cascades to extract features from three datasets simultaneously. 
It compares combined feature dissimilarities, updates model 
weights, and refines predictions to enhance accuracy. Each 
network layer shares the same architecture for concurrent 
feature extraction, with components detailed in Table 1. 
The convolutional layers are described by kernel k(x,y) of a 
predefined size (m,n) as

     (6)

Besides, the padding layer is employed to improve the 
extraction of critical features as

                   (7)

The ReLU activation layer is primarily used to eliminate 
negative values when processing image of ridges input into the 
MCNN network. The ReLU is computed as follows:

				          (8)
The Max-Pooling are expressed as [39] 

		        (9)

To prevent overfitting in the layers [40], bias is reduced by 
normalizing the retention ratio of nodes. In other hand, dropout 
is applied with a dropout probability p as 

					        (10)

The Softmax function [41] in the MCNN structure ensures 
that final layer outputs have the highest probability, simplifying 
use for end users and aiding further computations.

				       (11)

Algorithm 2 Building the MCNN model
Input: 215 normal ridges, 501 abnormal ridges, 90 validation ridges 
and 90 testing ridges
Output: Assessment of the structural condition of the JuR model
1 Initialize Splitting the ridges into 3 data sets: Anchor, Normal, and 

Abnormal
2 Initialize Setting the training parameters:  epochs ← 200, learning 

rate ← 0.00055, and  batch size ← 2
3 for  0 < epoch < 200 do

4

5 Extracting feature values ​​in turn through the cascades of the 
MCNN model:

Cascade 1:   Anchor 

Cascade 2:   Normal

Cascade 3:   Abnormal

6 Computing the value of Dap and Dan ← (12) and (13)

7 Determining the predicted value through the Softmax layer ← (11)

8 Computing the value of the loss function ← (14)
9 Checking the termination condition, if it is not met, increase the 

epoch by 1 and return to Step 3
10 end for
11 Extracting the MCNN model

12 end

The comparison of the dissimilarity of features between 
input ridges is determined by

			      (12)

			      (13)

where ,  and  represent the ridges in three datasets: 
Anchor, Normal, and Abnormal, respectively. The values      

,  and  are feature vectors extracted through 
the convolutional layers. To evaluate the convergence of the 
assessment model through the training process, the loss 
function is used to optimize the dissimilarity as [42]

   (14)

We get Dap + Dan=1, the dominant class score can be 
represented as max(Dap , Dan) . The dissimilarity D is defined as

                                    (15)

where σ ​denotes the sigmoid function with τ > 0 being a 
positive parameter that controls the sharpness of the mapping.

4. RESULTS AND DISCUSSIONS / Rezultati i rasprava
4.1. Configuration parameters / Konfiguracijski 
parametri
The training process of the MCNN model employs a dataset 
derived from the UT-JuR 01 model structure condition analysis. 
The UT-JuR 01 model was designed based on the TAM DAO 05 
rig with a scale of 1:100. Besides, the WitMotion WTVB05-485/
CAN vibration sensors were installed at eight monitoring points 
on the hull and legs of the rig, combined with an STM32F4 
microcontroller to collect data. The main parameters of the 
testing model are summarized in Table 2. 
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Table 2 The testing model parameters
Tablica 2. Parametri testnog modela

UT-JuR 01 model Vibration sensor
Description Parameter Description Parameter

Type Jack up Model WTVB05-485/CAN 
Overall length 1.62 m Measuring range 0 ~ 50 mm/s
Overall width 0.96 m Measuring frequency 1 ~ 100 Hz
Hull depth 0.232 m Output interfaces RS-485, CAN

Number of motors 06 Communication RS-485/CAN 
transceiver

Hull weight 0.0327 ton Voltage supply 9-36 VDC
Weight of one leg 0.012 ton Measuring range 0 ~ 30,000 µm
Lifting weight 0.0928 ton Accuracy ±4%

In this paper, the dataset for training and testing was 
formed from ridges obtained during an 8-week measurement 
campaign on the UT-JuR 01 experimental model, with 16 
measurements per day at eight sensor locations, each 
lasting 10 seconds. After preprocessing (noise filtering and 
normalization), the entire dataset was transformed into ridge 
maps using the FMA. The ridge dataset was categorized into 
three sets: Anchor, Normal, and Abnormal. Notably, the ridges 
used for the testing dataset were selected from samples not 
included in the training process, thereby ensuring objectivity in 
the evaluation. The specific division is outlined in Algorithm 2, 
which classifies 215 ridges as Normal, 501 ridges as Abnormal, 
90 ridges for validation, and 90 ridges reserved for testing. 
The authors configured the training parameters, including a 
batch size of 2, epochs of 200, a learning rate of 0.00055, and a 
contrastive loss [43]. These settings were optimized to achieve 
model convergence, as illustrated in Fig. 4.

Figure 4 The regression of MCNN model training process
Slika 4. Regresija tijekom procesa treniranja MCNN modela

The results presented in Fig. 4 indicate that the value of the 
loss function gradually converges to a final result of 0.0004226. 
In this study, the SNN architecture with triple loss is chosen to 
enhance the separation between Normal and Abnormal states. 
The parameter α in (14) acts as a sensitivity control threshold. 
If the characteristic distance between Anchor and Normal is 
less than α, it indicates stability. Conversely, if the distance 
between Anchor and Abnormal exceeds α, it signifies an 
abnormal state. The α value and the learning rate are adjusted 
by testing multiple times on the experimental data set to 
ensure stable convergence, reduce the loss value, and optimize 
response quality. In addition, the dataset was divided into 
three subsets: 80% for training, 10% for validation, and 10% for 
testing. The hyper parameters of the MCNN were tuned based 
on validation performance, and an early stopping criterion 
was employed to prevent overfitting. This procedure enabled 

the model to achieve better performance on the training data 
while maintaining generalization capability on unknown data. 
Furthermore, after the MCNN model extraction process, we 
evaluated the reliability of the proposed model by using the 
accuracy function as

		     (16)

therein TP stands for True Positive, while FP denotes False Positive. 
Conversely, TN indicates True Negative, and FN represents False 
Negative.

Table 3 Comparison of the parameters of convolutional neural 
networks in training assessment models

Tablica 3. Usporedba parametara konvolucijskih neuronskih 
mreža u modelima za procjenu treniranja

Parameter GoogleNet [44] AlexNet [45] Proposed MCNN

Input Shape 300×300×3 300×300×3 300×300×3
Epoch 200 200 200
Accuracy 66.7% 79.41% 96.3%
Learning rate 0.0025 0.001 0.00055
Training time 40 mins 15 mins 30 mins
Layers 24 144 34

The authors utilized ridge data detailing the structure 
states over time as training input for the proposed model and 
comparison algorithms like GoogleNet [44] and AlexNet [45]. 
Both evaluation models were built using the same parameters: 
200 epochs and an input shape of 300×300×3. The initial models 
had 144 layers for GoogleNet and 24 for AlexNet, as presented 
in Table 3. The evaluation results show that the accuracy of the 
CNN comparison models is not as good as the proposed MCNN 
model. Specifically, the GoogleNet algorithm achieved less than 
66.7% accuracy, while AlexNet achieved 79.41%. However, the 
training process for GoogleNet was time-consuming, up to 40 
minutes. The training result outcomes indicate better training 
efficiency and accuracy performance compared to traditional 
single-cascade convolutional networks. This result demonstrates 
the efficiency of the multi-cascade architecture in handling 
limited datasets. To further clarify, AlexNet and GoogleNet are 
selected as baselines due to their popularity and their role as 
reference standards in conventional CNN studies. The proposed 
MCNN utilizes the SNN architecture with triplet loss to optimize 
feature distances between normal and abnormal states, which 
leads to improved classification performance.

4.2. Results / Rezultati
4.2.1. Establishing the ridges / Definiranje stanja
Offshore construction assessment scenarios were evaluated using 
the UT-JuR 01 model. A simulation environment was established 
to test vibration impacts at weak points, reflecting the effects of 
JuR during typical operations. The study focuses on two states of 
JuR structures: low-frequency vibrations, representing a regular 
operation, and high-frequency vibrations, indicating unusual 
stresses. Results detailing structural state contours are shown in 
Fig. 5, with Fig. 5a displaying vibration amplitude over time and 
its normalization, while Fig. 5b illustrates the data analysis leading 
to the structural state ridges.
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Remark 1: Vibration measurement and storage (Fig. 5a) - 
The vibration amplitude of the structure is measured using 
an MSN, then synthesized and temporarily stored as a data 
array over time. The raw data is pre-processed through ADC 
signal conversion and noise filtering, which is managed by the 
STM32F4 central processor. Each stored data array contains 16 
data strings corresponding to 16 measurements taken each 
day, with each measurement spaced 90 minutes apart. This 
setup allows the vibration data arrays to capture information on 
changes in the overall structure over time while also optimizing 
data storage capacity on the server. Subsequently, the data 
arrays are organized into a confusion matrix, facilitating 

convenient storage and aiding in the development of effective 
data analysis solutions.

Remark 2: Analysis of data strings related to the structural 
stages of ridges (Fig. 5b) - Algorithm 1 is utilized to examine the 
JuR model states data arrays over time, using a confusion matrix. 
This process involves organizing the data nodes into a grid map 
measuring 60mm×60mm. The FMA algorithm connects these 
nodes to form a ridge that reflects the construction status. Changes 
in the shape of the ridges, combined with variations in the position 
of the peaks, indicate the overall state of the structure.

In this study, the JuR structural health ridges were 
constructed from structural vibration data measured from the 

(b)
Figure 5 Results of collecting and analyzing structural states data

Slika 5. Rezultati prikupljanja i analize podataka o strukturnim stanjima
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Node 
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[mm]

1 0.83 0.70 0.20 0.87 0.20 1.40 0.66 1.95

2 0.67 0.89 1.23 1.88 1.23 0.41 0.62 0.37

3 0.37 0.75 1.36 1.06 1.36 1.74 0.99 0.19

4 2.10 1.00 1.02 0.95 1.02 0.82 1.15 1.10

5 0.99 0.94 2.08 1.36 2.08 1.31 0.98 1.70

6 0.94 0.68 0.53 1.81 0.53 0.93 0.80 0.79

7 0.24 0.35 1.24 0.33 1.24 0.42 1.13 0.80

8 1.42 1.01 0.50 1.83 0.50 1.24 0.41 0.26

9 0.43 1.74 0.95 0.59 0.95 0.53 0.97 1.82

10 0.01 0.75 0.83 0.87 0.83 1.15 0.42 0.91

11 0.76 1.04 1.25 0.90 1.25 1.49 1.07 0.71

12 0.85 0.63 1.53 0.99 1.53 0.37 1.42 0.67

13 1.57 0.93 0.52 0.25 0.52 1.28 0.94 1.09

14 0.35 1.82 1.23 1.79 1.23 0.43 0.60 1.68

15 0.66 1.22 1.50 1.56 1.16 1.06 0.88 2.04

16 1.12 1.04 1.18 1.31 0.84 0.74 1.32 1.84

(a)



108 X-K. Dang et al:        Structural State Assessment for Jack-up Rig...

MSN. Specifically, as illustrated in Fig. 5b, the 4th and 6th ridges 
have radial ridge peaks with uniform spacing; the ridge-to-
ridge peak-to-ridge lines have evenly distributed areas without 
bends, reflecting the balance of the hull. In the case of the hull 
moving synchronously, there are no large oscillations that cause 
the hull to lose balance. On the contrary, as shown in the 2nd 
ridge, there are unevenly distributed local deformation areas, 
especially the ridge lines connecting the bend peaks, which 
show the imbalance in force transmission between structural 
components, which may originate from abnormal loads or 
resonant vibrations. Thus, the ridge characteristics not only 
have mathematical meaning in the data analysis process but 
also directly reflect the physical mechanism of the stable ridge 
(4th and 6th ridges), indicating the synchronization and safety 
of the structure, whereas the deformed ridge (2nd ridge) shows 
the appearance of anomalies that potentially lead to a decrease 
in the connection capacity. Based on these observations, the 
ridges representing the construction states over time are 
compiled into a dataset for the MCNN training process, with 
detailed results presented in the following section.

4.2.2. Assessing the state of the JuR structure / Procjena 
stanja strukture platforme
The MCNN model evaluates the state of the JuR structure 
by computing dissimilarity values between different states 
through two cascades. In the first cascade, the model compares 
the dissimilarity between the Anchor ridge and the Normal 
ridge to determine the Dap value (12). In the second cascade, the 
Anchor ridge is compared with the Abnormal ridge to obtain 
the Dan value (13). The final dissimilarity value D is determined 
based on the loss evaluation (14) and is characterized by the 
state identified as either Normal or Abnormal, as illustrated 
in Fig. 6a. In the experimental scenario, values collected from 
the SN are evaluated in real-time and presented through visual 
results using the D coefficient. Additionally, the data will be 
stored and analyzed over a period of eight consecutive weeks, 
creating a historical state of the structure, as illustrated in Fig. 
6b. The results indicate that the proposed solution is effective 
for monitoring the overall health of offshore structures, 
providing timely warnings in instances of prolonged vibrations 
and sudden increases in the D coefficient value.

(b)
Figure 6 Results of the assessment of the JuR model state applying the MCNN model

Slika 6. Rezultati procjene stanja JuR modela primjenom MCNN modela

(a)
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The MCNN assessment model uses two coefficients, Dan 
and Dap, which sum to 1. The state classification determined 
by these coefficients shows a smaller deviation value. As 
shown in Fig. 6a during the fourth measurement, Dap is equal 
to 0.13, which is less than Dan, indicating a normal state. Based 
on the classification and calculation results from the Softmax 
layer, the final assessment of the overall structure’s condition 
includes both its current state and the reliability coefficient D. 
Fig. 6b displays the monitoring results over eight weeks, from 
December 2, 2024, to January 25, 2025. Although the coefficient 
D shows fluctuations, abnormal values occur infrequently and 
remain low (not exceeding 0.8). Therefore, it can be concluded 
that the JuR structure is in a normal state during the monitoring 
period. However, it is essential to enhance the test scenarios for 
the proposed algorithm to develop a sample data set that better 
supports the detection of additional levels of abnormality.

5. CONCLUSION / Zaključak
This study introduces a methodology utilizing the MCNN to 
analyze vibration data to assess the health of offshore structures. 
Then, MSNs are strategically deployed at critical points on the 
structure to capture vibration metrics. The collected data is 
compiled into a confusion matrix for subsequent analysis with 
Algorithm 1, facilitating the creation of a comprehensive dataset 
that characterizes the structural condition. Over time, this dataset 
serves as input for training the MCNN model (via Algorithm 2), 
enabling the model to extract pertinent features that effectively 
classify the operational state of the structure as Normal or 
Abnormal based on the derived D value. This classification 
aids management in formulating targeted maintenance 
strategies, thereby ensuring the safety of both personnel and 
infrastructure. In future directions, this study aims to expand 
the experimental scope by simulating data under various noise 
conditions and constructing hypothetical scenarios involving 
sensor failures, such as signal loss, measurement errors, or 
signal delays. Concurrently, the MCNN architecture will be 
refined to enhance computational efficiency and better meet 
the demands of real-time monitoring. Additionally, a promising 
avenue for future research is the exploration of processing data 
from sensor networks in a time series format. This approach 
has the potential to streamline data analysis and significantly 
reduce response times, thereby enhancing the overall efficiency 
and responsiveness of the system.
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