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Abstract

Jack-up Rigs (JuRs) are integral to offshore resource extraction, mainly due to their
need for robust structural stability in challenging marine environments. This study
introduces a Multi-Cascade Neural Network (MCNN) framework designed to evaluate
the structural integrity of JuRs. We implement a Fast-Marching Algorithm (FMA) to
process the vibration data obtained from a Multi-Sensor Network (MSN) strategically
installed at critical locations on the rig. The FMA facilitates the construction of an
overall state ridge from the vibration datasets, which, over time, informs the MCNN-
based assessment model. During an 8-week evaluation period, the assessment
model was rigorously tested, resulting in a structural state classification value, which
effectively encapsulated the rig’s overall condition. The application of our proposed
methodology in various test scenarios demonstrated promising outcomes, validating
the efficacy of our approach in structural assessment for JuRs.

Sazetak
Naftne platforme kljucne su za eksploataciju morskih resursa, ponajprije zbog potrebe za KLJUCNE RIJECI
robusnom strukturnom stabilnoscu u zahtjevnim morskim uvjetima. Ovaj rad predstavlja . ;
Lo . . Y g .. . L algoritam brzog kretanja
okvir visekaskadnih neuronskih mrezZa dizajniran za procjenu strukturne cjelovitosti o .
. . . . . . . visesenzorska mreza
platformi. Implementiran je algoritam brzog kretanja (Fast-Marching Algorithm, FMA) N
. P - PR N . neuronska mreza
za obradu podataka o vibraciji prikupljenih s pomocu viSesenzorske mreze (Multi-Sensor "
Y s . Lo . P offshore konstrukcija
Network, MSN) strateski postavljene na klju¢nim lokacijama platforme. FMA omogucuje P
strukturna istisnina

kreiranje sveukupnog ,stanja” iz podataka, koje se tijekom vremena koristi u MCNN
modelu procjene. Tijekom osmotjednog razdoblja evaluacije model je temeljito testiran,
pri ¢emu je postignuta klasifikacijska vrijednost strukturnog stanja koja ucinkovito
odrazava cjelokupno stanje platforme. Primjena predloZzene metodologije u razli¢itim
testnim scenarijima pokazala je obecavajuce rezultate, potvrdujuci ucinkovitost pristupa
u procjeni strukturne cjelovitosti platformi.

1. INTRODUCTION / Uvod

The oil and gas industry have made significant advancements
alongside the processes of industrialization and modernization,
particularly in the use of modern technologies for drilling rigs
involved in oil and gas exploration and extraction (expressed in
Fig. 1). These technologies play a crucial role at nearly every phase
of production, spanning from manufacturing to optimizing
operational efficiency in offshore operations. Among these
advancements, the JuRs stand out as significant innovations
in offshore extraction [1]. Their adaptable architectures and
operational modalities enhance resource recovery efficiency,
resulting in improved extraction processes. However, these
offshore rigs face continuous challenges posed by harsh working
conditions [2] or failing the maritime regulatory framework [3].
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Key environmental parameters impacting structural integrity
include wave dynamics, aerodynamic forces, hydrodynamic
currents, and vibrational characteristics [4]. These variables
can markedly affect the stability of structures, leading to
displacements or potential failure [5]. Such vulnerabilities pose
serious risks during extraction operations if not adequately
monitored and maintained promptly.

Structural instability arises from external influences and the
degradation of connections within the structure. These factors can
be classified into the following categories [6]: Serviceability limit -
The limit states and limit parameters of a structure, according to
design, ensure stability during use [7]; Fatigue limit - The material’s
limit state can result in the degradation of structural connections
when exposed to particular environmental condition; Ultimate
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limit - Exceeding the maximum tolerance value for structural
deformations can damage the structure; Accidental Limit - The
integrity of the structural connections is compromised, leading
to afailure in the structural system and posing a significant safety
risk. Consequently, numerous research initiatives are dedicated to
advancing structural health monitoring systems, primarily aimed
at evaluating critical parameters that influence the structural
integrity and performance of buildings and infrastructure.

Figure 1 Tam Dao 05 Jack-up rig operating in Vietnam Sea
Slika 1. Tam Dao 05, naftna platforma - Vijetnamsko more

The stability of structural linkages in offshore structures is
predominantly influenced by mechanical inaccuracies, which can
be effectively managed through advanced precision machining
techniques or intelligent algorithms [8]. Furthermore, operational
challenges at uncertain connection points can provoke external
forces that produce vibrations, causing structural displacements
[9-10]. Should these displacement values surpass permissible
thresholds, there is a risk of compromising the facility’s geometric
integrity, potentially culminating in structural failure. Last but
not least, Mousavi et al. (2020) utilized Deep Learning (DL)
methodologies to accurately assess vibration levels experienced
during various operational conditions [11]. Besides, signal
inaccuracies during the collection of sensors monitoring
data contribute to decreased accuracy in structural health
assessments [12]. Data acquisition in harsh environments, such as
marine conditions, introduces significant deviations and reduces
measurement accuracy [13]. In response, Zhang et al. (2021) [14]
proposed a distributed recursive filter to reduce measurement
errors caused by environmental disturbances. Most studies
mainly focus on improving the quality assessment of operations
without considering the overall integrity of the structure.

For offshore projects with complex structures like JuR,
monitoring at a local area that has not accounted for the
overall kinetic characteristics of the structure can be ineffective.
Therefore, Corneliu et al. (2013) [15] examined Sensor Network
(SN) configurations to optimize the quality of monitoring datasets.
On the other hand, the stability of the construction depends on
the uniformity and strong connection between the components,
while local measurements can easily miss imbalances in these
structural parts. Thus, deploying the MSN at key positions helps
collect data over time [16], more accurately reflecting the overall
condition of the structure, and providing a more reliable basis for
assessing construction health [17-18]. Additionally, processing
measurement data with intelligent solutions such as Fuzzy [19]

enables the detection of how structural deviations change over
time. For large datasets, Artificial Intelligence (Al) provides many
advantages in analysis and developing evaluation models [20-
21], due to its ability to identify abnormal features in construction
data. In which Saadeldin et al. [22] developed a machine learning
model to predict the vibrations during drilling operations based
on surface data, thereby improving stability and reducing
downtime. Altindal et al. [23] proposed an anomaly detection
framework for multivariate drilling data, enhancing fault diagnosis
capabilities under actual operating conditions. Meanwhile,
Puruncajas et al. [24] applied the Convolutional Neural Networks
(CNNs) to classify the structural states of jacket foundations using
vibration signals, achieving high accuracy without the need for
finite element models. In particular, the Siamese Neural Network
(SNN) offers potential solutions for quickly detecting abnormal
points between datasets [25], and deep learning methods excel
in assessing the construction’s status in real time [26].

To enhance the speed and efficiency of processing big data,
various popular dimensionality reduction techniques have
emerged. Among these, the Principal Component Analysis
(PCA) is recognized as a linear method [27]. Although the PCA is
computationally efficient and straightforward, it often overlooks
nonlinear characteristics and fails to adequately represent the
uneven propagdation of fluctuations in data from the MSNs. On
the other hand, t-distributed Stochastic Neighbor Embedding
(t-SNE) is an effective nonlinear technique utilized for data
visualization and cluster detection. However, it is sensitive
to perplexity parameters, incurs a high computational cost,
and struggles to maintain spatial and temporal propagation
information [28]. Kernel PCA (KPCA) [29] offers an extension
of PCA into the nonlinear realm, enabling the capture of more
intricate relationships within the data. The proposed approach
also demands significant computational resources and proves
challenging to apply to large-scale datasets. In contrast, the
FMA excels by directly preserving the propagation process of
vibrations in both the spatial and temporal domains [30]. This
algorithm capability facilitates the construction of health ridges
that reflect the overall structural changes within a building,
demonstrating that the FMA algorithm is useful for reducing the
dimensionality of measurement datasets derived from MSNs.

This study develops an assessment model for evaluating the
overall state of JuR structures using the MCNN. Initially, MSN is
strategically positioned at critical locations within the structure
to monitor its vibration displacement. Subsequently, a JuR state is
constructed using the FMA, enabling a comprehensive evaluation
of JuR structures over time by analyzing variations in the ridge
profile and the acceleration of ridge peak motion. Finally, this
study develops an MCNN assessment model to examine the
characteristics of monitoring ridge maps as they change over time.
The analysis yields precise assessments of the structural condition,
thereby ensuring the safety and integrity of the structure.

The structure of this paper is delineated as follows: Section 2
outlines the implementation phases and objectives of the study,
introducing the FMA framework employed to scrutinize data
gathered from MSNs. Section 3 elaborates on developing a state
assessment model utilizing the MCNN methodology. Section 4
presents various experimental scenarios alongside a discussion
of the resulting outcomes. Finally, Section 5 encapsulates the
conclusions drawn from the study and digests potential issues
for future study.
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Figure 2 Overview of the MCNN assessment model
Slika 2. Pregled MCNN modela procjene

2. MATERIAL AND METHOD / Materijal i metoda This study assesses the integrity of the JuR model using
2.1. Stages and goals / Etape i ciljevi vibration data from a monitoring sensor network. We created an
The structural characteristics of the JuR in operating modes MCNN framework with an FMA algorithm that generates ridge
are closely related to the balance between the floor and the mapsillustrating the structure’s dynamic state. By analyzing these
leg connections. An overview of the MSN layout and the signal  ridge patterns, the framework effectively identifies changes in
processing process in the proposed model is illustrated in Fig. 2. structural integrity, informs managers on maintenance strategies,
The JuR structural assessment system consists of three main stages:  and improves the structure’s safety and reliability.

- Stage 1: Establishing an MSN to measure the vibration at key

points of the structure. 2.2. Analyzing the vibration data set / Analiza skupa
- Stage 2: Analyzing the vibration data using the FMA to  podataka o vibracijama
create ridge maps showing structural state. In assessing the stability of the JuR structure, it's essential

- Stage 3: Developing an assessment model using MCNN to  to ensure uniformity across all locations on the main deck.
analyze the time evolution of ridge data, thus providing a  Additionally, the lifting process must be stable and synchronized
specific evaluation of the structure’s state. at all legs of the rig [31-32]. Conversely, during exploration
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Figure 3 Vibration values measured on the experimental model UT-JuR 01
Slika 3. Vrijednosti vibracija izmjerene na testnom modelu UT-JuR 01
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drilling mode, prioritizing the structure’s stability is critical [33].
Consequently, deploying sensors at local points has proven
ineffective for evaluating the overall integrity of the structure.
This study proposes an assessment solution that employs an
MSN to monitor the structure’s vibrations [34-35] (expressed in
Fig. 3). The collected data will be analyzed and transformed into
a ridge map, which illustrates the structural condition through
the following two phases:

Phase 1 - Gathering the vibration data: The input data undergo
preprocessing to eliminate measurement noise and enhance the
efficiency of the training process [36]. Data scaling improves the
effectiveness of NN training, especially for developing reliable
state assessment models. The data are scaled across J columns,
ranging from 0 to 1024. Assuming that at kK measurements, we
take the i sample for each sensor location j, we have

X, = max (28), ;= min ()

withi=1,..,1,j=1,..,.Lk=1,..,K

(1

Let X; and X; denote the largest and smallest values in
column j, respectively. Consequently, the elements of matrix Z
are scaled as

&) _ ()
Vij = (Zij -

) 1024
17X —x; ()
The authors employed experiments on the UT-JuR 01 model
to collect displacement data sets from an SN. The sampling
rate was set at 0.1 second, and each measurement lasted for 10
seconds, utilizing an STM32F4 microprocessor. Specifically, the
experiments were conducted 16 times per day over a period
of 8 weeks, resulting in a total of k = 896 measurements. Each
measurement consisted of 100 readings (I) from 8 monitoring
sensor points (/). The raw data set 2® € M;405(R) from the SN can
be represented as [24]

(k) (k) (k)
Z1 Z12 Z1g Z%l)
(k) (k) (k) :
70 = | Z31 2,2 2 | Zz=| 7
: i : . (3)
(k) ® L ® :
Zg96,1  Z896.2 896,8 Z(896)

From this, the aggregate measurement data matrix is
presented as follows:

(1) 1) 1
Y11 V1,2 V1(,8)
@ LW JyeN
Y1001 Y1002 100,8 /6
(2) @) () —
17 T2 - Vg
: : L @)
@ @ @ r
r= Y1001 Y1002 - Vioos _ (4)
(896) (896) (896)
11 1,2 - Vg
: : s (896)
(896) (896) (896)
1001 Y1002 Y1008

Phase 2 - Transforming Multi-Dimensional Data to One-
Dimensional Ridges: We utilize the FMA to evaluate construction
state data acquired from our sensor network. The process
commences with normalizing sensor readings to ensure
consistency across the dataset. We then map these measurements
onto a mesh grid, establishing connections to the sensor

nodes using Dijkstra’s algorithm for effective pathfinding. The
progression ridges, representing the interrelation of the observed
sensor values, are subsequently optimized by applying the
Eikonal equation, which incorporates the influence of structural
vibrations. This methodology facilitates a comprehensive
assessment of the structural condition over time.The data analysis
procedure adheres to the steps delineated in Algorithm 1 [37].

Algorithm 1 Building a ridge map to monitor the state of JuR
structure

Input: Vibration dataset Z(k) € R/ measured from MSN
Normalization bounds: Xj, Xj
Thresholds: Acceptance « ¢, Ridge stability « &, Max
iterations < N _

Output:  Ridge map & representing JuR structural states

PP . (k)
1 Initialize normalize all measurements: ¥;; "« (2)

2 Initialize mesh grid G(x,y) over normalized axes

3 Initialize sets:

4 Acceptance set A—{p€G||VU(p)||=F(x,y)}

5 Consideration set C « initial ridge vertices

6 Trial set T « neighbors of Cin G

7 iter <0

8 while (iter<N,,) do

9 Selecting the landmark and endpoint (p, p ) € C

10 Expanding trial set T < T U neighbors (p,, p,)
1 foreach g € Tdo

12 Computing the optimal distance:
1
13 fij= [max(Di}"u, —Df*u ,0)2 +max(D;”u, —D;yu, O)ZF (5)
14 Moving acceptance criterion g from T — A
15 if f,(q) <&then
16 Moving acceptance criterion q from T — A
17 end if
18 end for
19 Building sub-ridges R, « {(®,9) |p,q € A A |lp —ql| < dinax}
20 Updating consideration set C < A U Ry,
21 if no new points accepted AZ < & then
22 break
23 end if
24 iter « jter + 1
25 end while
26 Drawing the final ridge map £ « A
27 end

This study utilizes Algorithm 1 to analyze the structural state
data, yielding a detailed ridge map that characterizes the JuR’s
structural condition. Algorithm 1 incorporates several quantities,
including the sets 4, C, and T, along with the threshold values ¢
and §, as well as (5), all of which facilitate the selection of points
on the grid G(xy). The ridge diagram Z is constructed directly
from the normalized vibration data, providing an accurate
representation of changes in the structural state. In case of the
structure is stable, the ridge maintains a regular shape; in contrast,
any deformation of the ridge indicates that the structure is in an
abnormal condition. The FMA synthesizes multi-dimensional
data from measurement sensor points into a unified ridge
representation. Consequently, this approach not only evaluates
the overall structure effectively but also streamlines the data
sampling process, enhancing the precision of the MCNN model.

X-K. Dang et al: Structural State Assessment for Jack-up Rig...



3. DESIGNING THE MCNN MODEL / Projektiranje
MCNN modela

The MCNN model is based on a Siamese neural network
architecture using one-shot learning, allowing for a multi-
cascade network for classification by comparing feature
vectors. The ridge dataset is divided into three subsets: Anchor
(reference for comparison), Normal (low-level non-dangerous
vibrations), and Abnormal (states with intense vibrations that
may lead to collapse).

Table 1 Structure of each cascade in the MCNN model
Tablica 1. Struktura pojedine kaskade unutar MCNN modela

Block-layer Name Size/ Value
1 ReflectionPad-Convolutional-ReLU = Kernel-size: 11x11
2 BatchNorm
3 ReflectionPad-Convolutional-ReLU = Kernel-size: 05x05
4 BatchNorm
5 ReflectionPad-Convolutional-ReLU = Kernel-size: 03x03
6 BatchNorm
7 ReflectionPad-Convolutional-ReLU = Kernel-size: 03x03
8 Fully Connected
9 Sigmoid [38] [0,1]

The MCNN assessment model utilizes multiple network
cascades to extract features from three datasets simultaneously.
It compares combined feature dissimilarities, updates model
weights, and refines predictions to enhance accuracy. Each
network layer shares the same architecture for concurrent
feature extraction, with components detailed in Table 1.
The convolutional layers are described by kernel k(xy) of a
predefined size (m,n) as

m/2 n/2

kCe,y) = f(x,y) =

u=-m/2v=-n/2

k(wv)f(x —w,y —v) (6)

Besides, the padding layer is employed to improve the
extraction of critical features as
H,ye = Hyy + paddingTop + paddingBottom

Woue = Wiy, + paddingRight + paddingLeft @)

The RelLU activation layer is primarily used to eliminate
negative values when processing image of ridges input into the
MCNN network. The ReLU is computed as follows:

f(s) = max (0,s) (8)
The Max-Pooling are expressed as [39]

m) — [£m m miT £m _
f A" S S S max z 9)

To prevent overfitting in the layers [40], bias is reduced by
normalizing the retention ratio of nodes. In other hand, dropout

is applied with a dropout probability p as

0
h=1 h

1-p

(10)

The Softmax function [41] in the MCNN structure ensures
that final layer outputs have the highest probability, simplifying
use for end users and aiding further computations.

exp (x;)

flx) = l

=g 11
S exp (1) an

Algorithm 2 Building the MCNN model

Input: 215 normal ridges, 501 abnormal ridges, 90 validation ridges
and 90 testing ridges

Output: Assessment of the structural condition of the JuR model

1 Initialize Splitting the ridges into 3 data sets: Anchor, Normal, and
Abnormal

2 Initialize Setting the training parameters: epochs « 200, learning
rate < 0.00055, and batch size « 2

3 for 0 <epoch <200do

4 xf € Anchor;x? € Normal;x!* € Abnormal
5 Extracting feature values in turn through the cascades of the
MCNN model:
Cascade 1: fo(x{") < x Anchor
Cascade 2: fo(x!) « xP Normal
Cascade 3: fo(x") « x[* Abnormal
6  Computing the value ofDapand D, < (12)and (13)
7 Determining the predicted value through the Softmax layer « (11)
8  Computing the value of the loss function « (14)
9  Checking the termination condition, if it is not met, increase the
epoch by 1 and return to Step 3
10 end for
11 Extracting the MCNN model
12 end

The comparison of the dissimilarity of features between
input ridges is determined by

2
Dap= ||fe(xf)—fa(xf)”2 (12)
Dan = Nfo(x) = fo(xII3 (13)

where x{’, :xlp and x* represent the ridges in three datasets:

Anchor, Normal, and Abnormal, respectively. The values

fo(x{), fo(xP) and fp(x{') are feature vectors extracted through

the convolutional layers. To evaluate the convergence of the

assessment model through the training process, the loss
function is used to optimize the dissimilarity as [42]

N
D oG = £GP = Mo e = fo GG + o] € RY (1)

We get Dap + D =1, the dominant class score can be
represented as max(Dap, D, ) .The dissimilarity D is defined as

Py <max(Dap,Dan) —-0.5
T

),D € [0.5;1] (15)
where ¢ denotes the sigmoid function with 7 > 0 being a
positive parameter that controls the sharpness of the mapping.

4. RESULTS AND DISCUSSIONS / Rezultati i rasprava
4.1. Configuration parameters / Konfiguracijski
parametri

The training process of the MCNN model employs a dataset
derived from the UT-JuR 01 model structure condition analysis.
The UT-JuR 01 model was designed based on the TAM DAO 05
rig with a scale of 1:100. Besides, the WitMotion WTVB05-485/
CAN vibration sensors were installed at eight monitoring points
on the hull and legs of the rig, combined with an STM32F4
microcontroller to collect data. The main parameters of the
testing model are summarized in Table 2.
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Table 2 The testing model parameters
Tablica 2. Parametri testnog modela

UT-JUR 01 model Vibration sensor

Description Parameter Description Parameter
Type Jackup Model WTVBO05-485/CAN
Overall length 1.62m Measuring range 0~ 50 mm/s
Overall width 0.96 m Measuring frequency 1~ 100 Hz
Hull depth 0.232m  Outputinterfaces  RS-485, CAN
Number of motors 06 Communication ﬁifssci_/iSeArN
Hull weight 0.0327 ton | Voltage supply 9-36 VDC
Weight of oneleg 0.012ton  Measuring range 0~ 30,000 um
Lifting weight 0.0928 ton  Accuracy +4%

In this paper, the dataset for training and testing was
formed from ridges obtained during an 8-week measurement
campaign on the UT-JuR 01 experimental model, with 16
measurements per day at eight sensor locations, each
lasting 10 seconds. After preprocessing (noise filtering and
normalization), the entire dataset was transformed into ridge
maps using the FMA. The ridge dataset was categorized into
three sets: Anchor, Normal, and Abnormal. Notably, the ridges
used for the testing dataset were selected from samples not
included in the training process, thereby ensuring objectivity in
the evaluation. The specific division is outlined in Algorithm 2,
which classifies 215 ridges as Normal, 501 ridges as Abnormal,
90 ridges for validation, and 90 ridges reserved for testing.
The authors configured the training parameters, including a
batch size of 2, epochs of 200, a learning rate of 0.00055, and a
contrastive loss [43]. These settings were optimized to achieve
model convergence, as illustrated in Fig. 4.

14
12
& 1.0
0038
-

0.6
04
0.2
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0

0 20 40 60 80 100 120 140 160 180 200
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Figure 4 The regression of MCNN model training process
Slika 4. Regresija tijekom procesa treniranja MCNN modela

The results presented in Fig. 4 indicate that the value of the
loss function gradually converges to a final result of 0.0004226.
In this study, the SNN architecture with triple loss is chosen to
enhance the separation between Normal and Abnormal states.
The parameter a in (14) acts as a sensitivity control threshold.
If the characteristic distance between Anchor and Normal is
less than q, it indicates stability. Conversely, if the distance
between Anchor and Abnormal exceeds q, it signifies an
abnormal state. The a value and the learning rate are adjusted
by testing multiple times on the experimental data set to
ensure stable convergence, reduce the loss value, and optimize
response quality. In addition, the dataset was divided into
three subsets: 80% for training, 10% for validation, and 10% for
testing. The hyper parameters of the MCNN were tuned based
on validation performance, and an early stopping criterion
was employed to prevent overfitting. This procedure enabled

the model to achieve better performance on the training data
while maintaining generalization capability on unknown data.
Furthermore, after the MCNN model extraction process, we
evaluated the reliability of the proposed model by using the
accuracy function as

(16)

N
sy 3 e )
ccuracy—N‘ J\TP; + FP; + TN; + FN;
=

therein TP stands for True Positive, while FP denotes False Positive.
Conversely, TN indicates True Negative, and FN represents False
Negative.

Table 3 Comparison of the parameters of convolutional neural
networks in training assessment models
Tablica 3. Usporedba parametara konvolucijskih neuronskih
mreza u modelima za procjenu treniranja

Parameter  GoogleNet [44]  AlexNet [45] Proposed MCNN
Input Shape  300x300x3 300%300x3 300%300x3
Epoch 200 200 200
Accuracy 66.7% 79.41% 96.3%
Learning rate  0.0025 0.001 0.00055
Training time 40 mins 15 mins 30 mins
Layers 24 144 34

The authors utilized ridge data detailing the structure
states over time as training input for the proposed model and
comparison algorithms like GoogleNet [44] and AlexNet [45].
Both evaluation models were built using the same parameters:
200 epochs and an input shape of 300x300x3.The initial models
had 144 layers for GoogleNet and 24 for AlexNet, as presented
in Table 3. The evaluation results show that the accuracy of the
CNN comparison models is not as good as the proposed MCNN
model. Specifically, the GoogleNet algorithm achieved less than
66.7% accuracy, while AlexNet achieved 79.41%. However, the
training process for GoogleNet was time-consuming, up to 40
minutes. The training result outcomes indicate better training
efficiency and accuracy performance compared to traditional
single-cascade convolutional networks. This result demonstrates
the efficiency of the multi-cascade architecture in handling
limited datasets. To further clarify, AlexNet and GoogleNet are
selected as baselines due to their popularity and their role as
reference standards in conventional CNN studies. The proposed
MCNN utilizes the SNN architecture with triplet loss to optimize
feature distances between normal and abnormal states, which
leads to improved classification performance.

4.2. Results / Rezultati

4.2.1. Establishing the ridges / Definiranje stanja

Offshore construction assessment scenarios were evaluated using
the UT-JuR 01 model. A simulation environment was established
to test vibration impacts at weak points, reflecting the effects of
JuR during typical operations. The study focuses on two states of
JUR structures: low-frequency vibrations, representing a regular
operation, and high-frequency vibrations, indicating unusual
stresses. Results detailing structural state contours are shown in
Fig. 5, with Fig. 5a displaying vibration amplitude over time and
its normalization, while Fig. 5b illustrates the data analysis leading
to the structural state ridges.

X-K. Dang et al: Structural State Assessment for Jack-up Rig...



Node Node Node Node Node Node Node Node
Strings 1 2 3 4 5 6 7 8

[mm]  [mm] [mm] [mm] [mm] [mm] [mm] [mm]
1 083 070 020 087 020 140 066 1.95
2 067 089 123 188 123 041 062 037
3 0.37 0.75 1.36 1.06 136 174 099 0.19
4 2.10 1.00 1.02 095 1.02 082 115 1.10
5 099 094 208 136 208 131 098 170
6 094 068 053 181 053 093 080 079
7 0.24 0.35 1.24 033 124 042 113 0.80
8 142 1.01 050 183 050 124 041 026
9 043 174 095 059 095 053 097 1.82
10 0.01 0.75 0.83 087 083 115 042 091
1 0.76 1.04 1.25 090 125 149 1.07 071
12 085 063 153 099 153 037 142 067
13 1.57 0.93 0.52 025 052 128 094 1.09
14 0.35 1.82 1.23 179 123 043 060 1.68
15 066 122 150 156 1.16 1.06 0.88 204
16 1.12 1.04 1.18 1.31 084 074 132 184

Fast-marching for the 1st SN Fast-marching for the 2nd SN
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NB: All measurements are in mm.
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Figure 5 Results of collecting and analyzing structural states data
Slika 5. Rezultati prikupljanja i analize podataka o strukturnim stanjima

Remark 1: Vibration measurement and storage (Fig. 5a) -
The vibration amplitude of the structure is measured using
an MSN, then synthesized and temporarily stored as a data
array over time. The raw data is pre-processed through ADC
signal conversion and noise filtering, which is managed by the
STM32F4 central processor. Each stored data array contains 16
data strings corresponding to 16 measurements taken each
day, with each measurement spaced 90 minutes apart. This
setup allows the vibration data arrays to capture information on
changes in the overall structure over time while also optimizing
data storage capacity on the server. Subsequently, the data
arrays are organized into a confusion matrix, facilitating

convenient storage and aiding in the development of effective
data analysis solutions.

Remark 2: Analysis of data strings related to the structural
stages of ridges (Fig. 5b) - Algorithm 1 is utilized to examine the
JUR model states data arrays over time, using a confusion matrix.
This process involves organizing the data nodes into a grid map
measuring 60mmx60mm. The FMA algorithm connects these
nodes to form a ridge that reflects the construction status. Changes
in the shape of the ridges, combined with variations in the position
of the peaks, indicate the overall state of the structure.

In this study, the JuR structural health ridges were
constructed from structural vibration data measured from the
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MSN. Specifically, as illustrated in Fig. 5b, the 4" and 6™ ridges
have radial ridge peaks with uniform spacing; the ridge-to-
ridge peak-to-ridge lines have evenly distributed areas without
bends, reflecting the balance of the hull. In the case of the hull
moving synchronously, there are no large oscillations that cause
the hull to lose balance. On the contrary, as shown in the 2
ridge, there are unevenly distributed local deformation areas,
especially the ridge lines connecting the bend peaks, which
show the imbalance in force transmission between structural
components, which may originate from abnormal loads or
resonant vibrations. Thus, the ridge characteristics not only
have mathematical meaning in the data analysis process but
also directly reflect the physical mechanism of the stable ridge
(4" and 6" ridges), indicating the synchronization and safety
of the structure, whereas the deformed ridge (2" ridge) shows
the appearance of anomalies that potentially lead to a decrease
in the connection capacity. Based on these observations, the
ridges representing the construction states over time are
compiled into a dataset for the MCNN training process, with
detailed results presented in the following section.

4.2.2. Assessing the state of the JuR structure / Procjena
stanja strukture platforme

The MCNN model evaluates the state of the JuR structure
by computing dissimilarity values between different states
through two cascades. In the first cascade, the model compares
the dissimilarity between the Anchor ridge and the Normal
ridge to determine the Dap value (12). In the second cascade, the
Anchor ridge is compared with the Abnormal ridge to obtain
the D, value (13). The final dissimilarity value D is determined
based on the loss evaluation (14) and is characterized by the
state identified as either Normal or Abnormal, as illustrated
in Fig. 6a. In the experimental scenario, values collected from
the SN are evaluated in real-time and presented through visual
results using the D coefficient. Additionally, the data will be
stored and analyzed over a period of eight consecutive weeks,
creating a historical state of the structure, as illustrated in Fig.
6b. The results indicate that the proposed solution is effective
for monitoring the overall health of offshore structures,
providing timely warnings in instances of prolonged vibrations
and sudden increases in the D coefficient value.
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Figure 6 Results of the assessment of the JuR model state applying the MCNN model
Slika 6. Rezultati procjene stanja JuR modela primjenom MCNN modela
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The MCNN assessment model uses two coefficients, D,
and Dap, which sum to 1. The state classification determined
by these coefficients shows a smaller deviation value. As
shown in Fig. 6a during the fourth measurement, D,is equal
to 0.13, which is less than D_, indicating a normal state. Based
on the classification and calculation results from the Softmax
layer, the final assessment of the overall structure’s condition
includes both its current state and the reliability coefficient D.
Fig. 6b displays the monitoring results over eight weeks, from
December 2, 2024, to January 25, 2025. Although the coefficient
D shows fluctuations, abnormal values occur infrequently and
remain low (not exceeding 0.8). Therefore, it can be concluded
that the JuR structure is in a normal state during the monitoring
period. However, it is essential to enhance the test scenarios for
the proposed algorithm to develop a sample data set that better
supports the detection of additional levels of abnormality.

5. CONCLUSION / Zakljuéak

This study introduces a methodology utilizing the MCNN to
analyze vibration data to assess the health of offshore structures.
Then, MSNs are strategically deployed at critical points on the
structure to capture vibration metrics. The collected data is
compiled into a confusion matrix for subsequent analysis with
Algorithm 1, facilitating the creation of a comprehensive dataset
thatcharacterizesthe structural condition. Overtime, thisdataset
serves as input for training the MCNN model (via Algorithm 2),
enabling the model to extract pertinent features that effectively
classify the operational state of the structure as Normal or
Abnormal based on the derived D value. This classification
aids management in formulating targeted maintenance
strategies, thereby ensuring the safety of both personnel and
infrastructure. In future directions, this study aims to expand
the experimental scope by simulating data under various noise
conditions and constructing hypothetical scenarios involving
sensor failures, such as signal loss, measurement errors, or
signal delays. Concurrently, the MCNN architecture will be
refined to enhance computational efficiency and better meet
the demands of real-time monitoring. Additionally, a promising
avenue for future research is the exploration of processing data
from sensor networks in a time series format. This approach
has the potential to streamline data analysis and significantly
reduce response times, thereby enhancing the overall efficiency
and responsiveness of the system.
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